浏览全部资源
扫码关注微信
中国科学院 上海微系统与信息技术研究所2. 中国科学院大学
收稿日期:2012-12-31,
修回日期:2013-01-22,
网络出版日期:2013-06-20,
纸质出版日期:2013-06-15
移动端阅览
刘登宽 陈思井 尤立星 何宇昊 张玲. 超导纳米线单光子探测器的光耦合结构[J]. 光学精密工程, 2013,21(6): 1496-1502
LIU Den-kuan CHEN Si-jing YOU Li-xing HE Yu-hao ZHANG Ling. Fiber coupling of superconducting nanowire single-photon detectors[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1496-1502
刘登宽 陈思井 尤立星 何宇昊 张玲. 超导纳米线单光子探测器的光耦合结构[J]. 光学精密工程, 2013,21(6): 1496-1502 DOI: 10.3788/OPE.20132106.1496.
LIU Den-kuan CHEN Si-jing YOU Li-xing HE Yu-hao ZHANG Ling. Fiber coupling of superconducting nanowire single-photon detectors[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1496-1502 DOI: 10.3788/OPE.20132106.1496.
为了提高超导纳米线单光子探测系统(SNSPD)的探测效率,搭建了超导纳米线单光子探测系统,研究了该系统的光耦合结构及该结构随温度降低而发生的变化。首先,测量了SNSPD在不同电流下的量子效率,确定了器件的性能。然后,提出了两种不同的光纤直接对准的器件封装方法,这些方法可以在室温下自主控制光纤端面与器件表面的距离(gap)。考虑封装材料的热胀冷缩,gap在温度变化时有很明显的变化,研究了温度变化对gap的影响。最后,提出通过改变入射光的波长来观察器件表面反射光光强的周期性波动,从而精确测量不同温度下gap的大小。实验结果表明,对于两种不同的光耦合结构,gap在温度降低270 K以后分别减小了4.1 m和17 m。理论计算和实验数据基本吻合,可为未来器件封装和新型封装结构的设计提供参考依据。
In order to investigate the characteristics of the package and fiber coupling of a Superconducting Nanowire Single-photon Detector (SNSPD)
the SNSPD was successfully built up in our laboratory. Experiments show that the quantum efficiencies of the detector under different light wavelengths are 6%@1310nm and 3%@1550nm when the dark count rate is 100 Hz. Then
as the distance(gap) between SNSPD and optical fiber would be changed due to the thermal stress during cooling
and would cause a misalignment
two kinds of fiber coupling methods to modulate the gap at room temperature were proposed. Finally
by altering the wavelength of the input light
the exact values of the gap at different temperatures were measured and then the influence of temperature on the gap were figured out by an experiment. The experimental results indicate that decreases of the gap for the two packages are 4.1 m and 17 m when the temperature dereases 270 K. Based on the analysis of package material and structure
the gaps at both room and low temperature were calculated theoretically. The result fits well with that of the experiments and it may offer some references to the design of new package and fiber coupling in the future.
GOLTSMAN G N, OKUNEV O, CHULKOVA G, et al.. Picosecond superconducting single-photon optical detector [J]. Appl. Phys. Lett., 2001, 79(6): 705-707.[2]HU X L, DAULER E A, MOLNAR R J, et al.. Superconducting nanowire single-photon detectors integrated with optical nano-antennae [J]. Opt. Express, 2011, 19(1): 17-31.[3]AKHLAGHI M K, MAJEDI A H. Gated mode superconducting nanowire single photon detectors [J]. Opt. Express., 2012, 20(2): 1608-1616.[4]YAMASHITA T, MIKI S, MAKISE K, et al.. Origin of intrinsic dark count in superconducting nanowire single-photon detectors [J]. Appl. Phys. Lett., 2011, 99(16): 161105-1-3.[5]COLLINS R J, HADFIELD R H, FERNANDEZ V, et al.. Low timing jitter detector for gigahertz quantum key distribution[J]. Electron. Lett., 2007, 43(3):180-181.[6]LIU Y, CHEN T Y, WANG J, et al.. Decoy-state quantum key distribution with polarized photons over 200 km [J]. Opt. Express., 2010, 18(8): 8587-8594.[7]TAKESUE H, NAM S W, ZHANG Q, et al.. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors [J]. Nat. Photonics., 2007, 1(6): 343-348.[8]KORNEEV A, LIPATOV A, OKUNEV O, et al.. GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits [J]. Microelectron. Eng., 2003, 69(2-4): 274-278.[9]HADFIELD R H, HABIF J L, SCHLAFER J, et al.. Quantum key distribution at 1550 nm with twin superconducting single-photon detectors[J]. Appl. Phys. Lett., 2006, 89(24): 241129-1-3.[10]SEMENOV A, ENGEL A, HUBERS H W, et al.. Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips [J]. Eur. Phys. J. B., 2005, 47(4): 495-501.[11]MIKI S, FUJIWARA M, SASAKI M, et al.. Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates [J]. Appl. Phys. Lett., 2008, 92(6): 061116-1-3.[12]ORGIAZZI J L F X, MAJEDI A H. Robust packaging technique and characterization of fiber-pigtailed superconducting NbN nanowire single photon detectors [J]. IEEE Trans. on Appl.Supercon., 2009, 19(3): 341-345.[13]EKIN J. Experimental Techniques for Low-Temperature Measurements[M]. USA: Oxford University Press, 2006.
0
浏览量
505
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构