浏览全部资源
扫码关注微信
贵州民族大学 信息工程学院2. 桂林电子科技大学 电子工程与自动化学院
收稿日期:2013-01-04,
修回日期:2013-02-21,
网络出版日期:2013-06-20,
纸质出版日期:2013-06-15
移动端阅览
袁纵横 苏睿 黄静. 宽谐振区的光学纳米天线的谐振[J]. 光学精密工程, 2013,21(6): 1518-1523
YUAN Zong-heng SU Rui HUANG Jin. Resonance of Optical Nano-Antenna with Wider Resonant Areas[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1518-1523
袁纵横 苏睿 黄静. 宽谐振区的光学纳米天线的谐振[J]. 光学精密工程, 2013,21(6): 1518-1523 DOI: 10.3788/OPE.20132106.1518.
YUAN Zong-heng SU Rui HUANG Jin. Resonance of Optical Nano-Antenna with Wider Resonant Areas[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1518-1523 DOI: 10.3788/OPE.20132106.1518.
提出了一种有双谐振频率和较宽谐振区域的纳米天线结构。利用有限积分法,计算了由金构成的表面等离子体光学纳米天线的谐振特性,研究了在谐振区域内谐振频率和谐振电场随位置变化的情况。结果表明,在不同谐振频率下存在两个谐振电场,在中间区域,谐振频率为270 THz,在侧边间隙区,谐振频率为390 THz;激励源为1 V/m时,其谐振电场均达700 V/m以上,是普通偶极子天线的18倍;第一谐振区域的谐振场集中在10~25 nm,在此范围内,谐振电场较大、谐振频率几乎不变;加上折射率为1.5 的玻璃衬底后,天线的谐振电场达到800 V/m,与没有衬底时相比,谐振频率变化很小。研究的天线结构在高性能的光学纳米天线、太阳能电池和生物传感器方面有潜在的应用价值。
A nano-antenna with two resonant frequencies and wider resonant areas was constructed. On the basis of the finite integral method
the resonant properties of the surface plasmon optical nano-antenna constructed by Au were calculated and the resonant frequencies and resonant fields in resonant areas were mainly simulated. The experiments show that there are two resonant areas in different resonant frequencies
which are 270 THz at the middle gap and 390 THz at the side gap. Their resonant electric fields are up to 700 V/m
which is about 18 times higher than that of the common dipole antenna when the excitation field is 1 V/m. The resonance field at the first resonant area is confined at the central part from 10 nm to 25 nm along the Z-axis direction
the resonant frequency is almost not changed and the magnitude is greater. The structure with a glass substrate of refraction index of 1.5 is also considered
the resonant field is up to 800 V/m
whereas the resonant center frequencies are almost not changed. The proposed structure has potential applications to high-quality optical antennas
solar cells
and biosensors.
ROBERT D G,ROBERT J S,DANIEL E P. Optical antenna: Towards a unity efficiency near-field optical probe [J]. Appl. Phys. Lett.,1997,70(11):1354-1356.[2]CROZIER K B, SUNDARAMURTHY A, KINO G S, et al.. Optical antenna : Resonators for local field enhancement [J].J. App Phys. 2003,94(7): 4632-4642.[3]MUHLSCHLEGEL P, EISLER H J, MARTIN O J F, et al.. Resonant optical antennas [J]. Science, 2005,308(5728):1607-1609.[4]CUBUKCU E, KORT E A, CROZIER K B, et al.. Plasmonic laser antenna [J]. Appl. Phys. Lett.,2006, 89(9):093120-093123.[5]KOHOUTEK J, GELFAND R M, BONAKDAR A, et al.. Composite nano-antenna integrated with quantum [J]. Photonics Technology Letters, IEEE,2010,22(21):1580-1582.[6]CHAU Y F, YEH H H,TSAI D P. A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole [J]. Journal of Electromagnetic Waves and Applications ,2010,24(11): 1621-1632.[7]史林兴,王莉,李华,等. 表面等离子体激元透镜设计及其数值计算[J]. 光学 精密工程,2010,18(4):831-835. SHI L X, WANG L, LI H, et al.. Design and numerical simulation of Plasmon polariton nanolens [J]. Opt. Precision Eng., 2010,18(4):831-835. (in Chinese) [8]TIWARI B N, HOCHMEISTER A, JEGERT G,et al.. Nano Antenna Array for Terahertz Detection [J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(10): 2751-2757. [9]DAVID A, NIKOLAI B, AMIR N, et al.. Light emission rate enhancement from InP MQW by plasmon nano-antenna arrays [J]. Optics Express,2011,19(10):9807-9813. [10]DANIEL W, PABLO A , PABLO A G, et al.. Longitudinal and transverse coupling in infrared gold nano antenna arrays: long range versus short range interaction regimes [J]. Opt. Express, 2011,19(16):15047-15061.[11]JESLY J, AJITH R, VINCENT M. Surface plasmon near-field resonance characteristics of silver shell nanocylinders arranged in triangular geometry [J]. Appl. Opt. 2011,50(33): 6277-6282.[12]黄茜,熊绍珍,赵颖, 等. 表面等离子体激元非线性表面增强拉曼散射效应[J].物理学报,2012,61(15):157801-1-157801-6.HUANG Q, XIONG S ZH, ZHAO Y, et al.. Nonlinear phenomenon of surface enhanced raman scattering caused by surface Plasmon [J].Acta Phys.Sin.,2012, 61(15): 157801-1-157801-6.(In Chinese) [13]熊尚,罗雪丰,韩立. 纯金膜表面等离子增强的旋光效应[J].光学 精密工程,2012, 20(7): 1525-1531.XIONG SH, LOU X F, HAN L. Plasmon enhanced Magneto-optical effect on surface of pure gold film [J]. Opt. Precision Eng., 2012,20(7): 1525-1531. ( in Chinese) [14]张兵心, 陈淑芬, 付雷,等. 一种温控的可调表面等离子体光学器件[J].光学学报,2012,32(7):0723005-1-0723005-6.ZHANG B X,CHEN S F,FU L, et al.. A Temprature -Controlled Tunable Plasmonic dual-Band Absorber [J]. Acta Optica Sinica,2012, 32(7):0723005-1-0723005-6. (in Chinese)[15]http://en.wikipedia.org/wiki/Computational_electromagnetics#Finite_integration_technique_.28FIT.29.[16]http://www.cst.com/Content/Applications/Article/Article.aspx?id=317.[17]JEONG S Y, SEUNG G L, PARK S G, et al.. Drude model for the optical properties of a nano-scale thin metal film revisited [J].J. Korean Phys. Soc, 2009,55(6):2552- 2555.[18]JOHNSON P B, CHRISTY R W. Optical constants of the noble metals [J].Phys. Rev.,1972,B 6(12):4371-4381.
0
浏览量
370
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构