浏览全部资源
扫码关注微信
上海交通大学 电子信息与电气工程学院
收稿日期:2012-11-06,
修回日期:2013-01-10,
网络出版日期:2013-06-20,
纸质出版日期:2013-06-15
移动端阅览
陈雯雯 颜国正 贺术 柯全. 胶囊内窥镜在肠道中的钳位[J]. 光学精密工程, 2013,21(6): 1553-1560
CHEN Wen-wen YAN Guo-zheng HE Shu HE Quan. Clamping mechanism of capsule endoscopes in intestine[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1553-1560
陈雯雯 颜国正 贺术 柯全. 胶囊内窥镜在肠道中的钳位[J]. 光学精密工程, 2013,21(6): 1553-1560 DOI: 10.3788/OPE.20132106.1553.
CHEN Wen-wen YAN Guo-zheng HE Shu HE Quan. Clamping mechanism of capsule endoscopes in intestine[J]. Editorial Office of Optics and Precision Engineering, 2013,21(6): 1553-1560 DOI: 10.3788/OPE.20132106.1553.
由于胶囊内窥镜的有效钳位是实现其在肠道中有效驻停及运动的重要因素, 本文研究并设计了胶囊内窥镜的钳位机构。首先,基于对摩擦力和肠道形变的分析,讨论了影响钳位力的因素。考虑肠道安全性,设计了阿基米德螺线腿机构。然后,通过构建离体肠道测试平台,测试不同直径、宽度、纹理及形状的样本在肠道内的钳位特性;分析实验结果,并建立了可定性描述钳位力的方程。最后,基于电流反馈实现钳位机构的安全控制;通过离体实验测试了钳位机构运动性能,并验证了钳位机构的安全性和可行性。实验结果显示,优化后的螺线腿钳位机构的钳位力达1.486 N;可较好地适应肠道的生理环境,满足扩展肠道、安全钳位的要求。
As the efficient clamping of a capsule endoscope in an intestine plays a major role for its stopping and movement in the intestine
this paper investigated and designed a kind of clamping mechanism for the capsule endoscope. Firstly
the influence factors of clamping force were discussed on the analysis of the friction and stress force of the intestine
then a clamping mechanism of Archimedean spiral legs was designed in consideration of the security of the intestine. A test platform was built to measure the clamping force of mechanism by comparing the different diameters
widths
textures and shapes. On the basis of the analysis of test result
an equation of clamping force was established. Finally
the safe control of clamping mechanism was implemented by a current feedback and the safety and reliability of Archimedean spiral legs were proved. Experimental results indicate that the optimized clamping mechanism would be 1.486 N. It can satisfy the anchoring requirements of expanding intestine and assuring the safety of colon.
MERON G D. The development of the swallowable video capsule(M2A)[J]. Gastrointestinal Endoscopy, 2000, 52(6): 817-819.[2]POSTGATE A J, WILL O C, FRASER C H, et al.. Capsule endoscopy for the small bowel in juvenile polyposis syndrome: A case series [J]. Endoscopy, 2009, 41(11): 1001-1004.[3]SUKHO P, JONGOH P, HYUNJUN P, et al.. Multi-functional Capsule Endoscope for Gastro-intestinal Tract [C]. In: Proceedings of the SICE-ICASE, 2006, International Joint Conference, 2006,2090-2093.[4]MENCIASSI A, GORINI S,MOGLIA A, et al.. Clamping tools of a capsule for monitoring the gastrointestinal tract problem analysis and preliminary technological activity [C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005,1309-1314.[5]GORINI S, QUIRINI M, MENCIASSI A, et al.. A novel SMA-based actuator for a legged endoscopic capsule [C]. The First IEEE/RAS-EMBS International conference on Biomedical Robotics and Biomechatronics, 2006,443-449. [6]KIM B ,LEE S,PARK J H, et al.. Inchworm-like microrobot for capsule endoscope [C]. IEEE International Conference on Robotics and Biomimetics,2004,458-463.[7]PARK H,PARK S,YOON E, et al.. Paddling based microrobot for capsule endoscopes [C]. IEEE International Conference on Robotics and Automation, 2007,3377-3382. [8]QUIRINI M, SCAPELLATO S, VALDASTRI P, et al.. An approach to capsular endoscopy with active motion [C]. Engineering in Medicine and Biolog Society,EMBS 2007,29th Annual International Conference of the IEEE, 2007,2827-2830.[9]VALDASTRI P, WEBSTER R J, QUAGLIA C, et al.. A new mechanism for mesoscale legged locomotion in compliant tubular environments [J]. Robotics, 2009,(25):1047-1057.[10]ACCOTO D, PASSANISI S, GUGLIELMELLI E. Pinch locomotion: A novel propulsion technique for endoscopic robots [C]. 4th IEEE RAS&EMBS International Conference on Biomedical Robotics and Biomechatronics(BioR061),2012,1377-1382.[11]PHEE L, MENCIASSI A, ACCOTO D, et al.. Analysis of robotic locomotion devices for the gastrointestinal tract [J]. Robotics Research, 2003, 6: 467-483.[12]BUSELLI E, PENSABENE V, CASTRATARO P, et al.. Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy [J]. Measurement Science and Technology, 2010, 21(10): 105802-105808.[13]CHEUNG E, KARAGOZLER M E, PARK S, et al.. A new endoscopic microcapsule robot using beetle inspired microfibrillar adhesives [C]. 2005 IEEE/ASME International conference on Advanced Intelligent Mechatronics,2005,551-557. [14]KIM Y, KIM D. Biotribological investigation of a multi-tube foot for traction generation in a medical microrobot [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2009,223(6):677-686.[15]HOEG H D, SLATKIN A B, BURDICK J W, et al.. Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope [C]. In: Proceedings of the Robotics and Automation, 2000,1592: 1599-1606.[16]KIM J S, SUNG I H, KIM Y T, et al.. Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application [J]. Tribology Letters, 2006, 22(2): 143-149. [17]WANG X,MENG M Q H. An experimental study of resistant properties of the small intestine for an active capsule endoscope [J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010,224(1):107-118.[18]WANG K D, YAN G ZH. Research on measurement and modeling of the gastro intestine's frictional characteristics [J]. Measurement Science & Technology, 2009, 20(1):015803-015808. [19]陈雯雯, 颜国正, 高鹏,等. 结肠诊疗微机器人控制系统的设计和实现 [J]. 光学 精密工程, 2012, 20(6): 1296-1302.CHEN W W, YAN G ZH, GAO P, et al.. Control system design of micro diagnosis and treat robot for colonoscopy[J]. Opt. Precision Eng., 2012, 20(6): 1296-1302.(in Chinese)
0
浏览量
75
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构