浏览全部资源
扫码关注微信
1. 暨南大学 光电工程系,广东 广州,510632
2. 华南农业大学 理学院,广东 广州,510642
3. 暨南大学 光电信息与传感技术广东普通高校重点实验室,广东 广州,510632
收稿日期:2013-01-03,
修回日期:2013-03-26,
网络出版日期:2013-07-15,
纸质出版日期:2013-07-15
移动端阅览
潘哲朗 李仕萍 钟金钢. 用数字全息层析成像技术测量毛细管的内径及壁厚[J]. 光学精密工程, 2013,21(7): 1643-1650
PAN Zhe-lang, LI Shi-ping, ZHONG Jin-gang. Measurement of inner diameter and wall thickness for micro-capillary by digital holographic tomography[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1643-1650
潘哲朗 李仕萍 钟金钢. 用数字全息层析成像技术测量毛细管的内径及壁厚[J]. 光学精密工程, 2013,21(7): 1643-1650 DOI: 10.3788/OPE.20132107.1643.
PAN Zhe-lang, LI Shi-ping, ZHONG Jin-gang. Measurement of inner diameter and wall thickness for micro-capillary by digital holographic tomography[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1643-1650 DOI: 10.3788/OPE.20132107.1643.
研究了用数字全息层析成像技术测量微毛细管结构的可行性。考虑毛细管具有理想的柱对称结构,因此采用单幅全息图获取到的物光波复振幅数据来模拟不同角度下的投影数据。分别运用滤波反投影重建算法和傅里叶衍射重建算法对微毛细管进行折射率三维重构;根据重构的折射率切片图,进一步运用相关的边缘提取算法处理得到毛细管的内径及壁厚尺寸。实验结果表明,在合理的光路环境设置下,满足Rytov近似条件下的傅里叶衍射重建算法比滤波反投影重建算法更能够正确反映物体的结构尺寸,更适合用于微小弱散射物体的几何参数测量。实验结果验证了用数字全息方法实现衍射层析重建的可行性,从而为具有柱对称结构的弱散射物体的无损测量提供了一种新的途径。
The feasibility to measure the inner diameter and wall thickness of a microcapillary by using digital holographic tomography was explored. As the microcapillary had an ideal cylindrically symmetric structure
the single reconstructed data under zero incidence angle were used to simulate all measured field data under different angles. A tomography was performed for the microcapillary by a filtered backprojection algorithm and a Fourier diffraction algorithm respectively to reconstruct the 3D map of refractive index. According to the 3D distribution of refractive index
the size of inner diameter and wall thickness of microcapillary were obtained by the related edge detection algorithm of image processing. Experimental results show that diffraction tomography based on the Rytov approximation can better response the dimensions of the microcapillary than the filtered backprojection reconstruction algorithm for tiny weaklydiffracting objects under the condition of reasonable light path environment of the hologram recording. It proves that the digital holographic tomography can measure the inner diameter and wall thickness of the microcapillary exactly and can provide a new way for the nondestructive measurement of tiny weaklydiffracting objects.
[1]PRESHY H M. Preform core diameter measurement by fluorescence [J]. Appl. Opt., 1991, 20(24): 15-21.[2]WATKINS L S. Control of fiber manufacturing processes [J]. Proc. of the IEEE, 1982, 70(6): 626-633.[3]娄菁林. 测量石英管几何量的光学原理[J]. 光学技术, 1991(2): 25-31.LOU J L. Optical principle for measuring geometrical quantity of quartz tube [J]. Optical Technology, 1991(2): 25-31. (in Chinese)[4]陈安健. 透明管径及管厚的CCD成像在线测量方法 [J] . 应用光学, 2001, 22(1): 46-48.CHEN A J. On-line measurement methods with CCD imaging of the pipe diameter and wall thickness of transparent pipe [J]. Appl. Opt., 2001, 22(1): 46-48. (in Chinese)[5]CHARRIRE F, MONTFORT F, KHN J, et al.. Cell refractive index tomography by digital holographic microscopy [J]. Opt. Lett., 2006, 31(2):178-180.[6]CHOI W, FANG Y C, BADIZADEGAN K, et al.. Tomographic phase microscopy [J] . Natural Methods, 2007, 4(9): 717-719.[7]KOU S, SHEPPARD C. Image formation in holographic tomography [J]. Opt. Lett., 2008, 33(20): 2362-2364.[8]周文静,胡文涛,郭路,等. 少量投影数字全息层析重建实验研究 [J]. 物理学报, 2010, 59(12): 8499-8511. (in Chinese)ZHOU W J, HU W T, GUO L, et al.. Experimental study of digital holographic tomography by a few projections [J]. Acta Physica Sinica, 2010, 59(12): 8499-8511.[9]CHARRIERE F, PAVILLON N, COLOMB T, et al.. Living specimen tomography by digital holographic microscopy: morpho-metry of testate amoeba [J]. Opt. Express, 2006, 14(16): 7005-7013.[10]KAK A C, SLANEY M. Principles of Computerized Tomographic Imaging [M]. New York: the Institute of Electrical and Electronics Engineers, Inc., 1999: 49-59.[11]WOLF E. Three-dimensional structure determination of semi-transparent objects from holographic data [J]. Opt. Commun., 1969,1(4): 153-156.[12]DANDLIKER R, WEISS K. Reconstruction of the three-dimensional refractive index from scattered waves [J]. Opt. Commun., 1970, 1(7): 323-328.[13]DEVANEY A J. Inverse-scattering theory within the Rytov approximation [J]. Opt. Lett., 1981, 6(8): 374-376.[14]YU L, KIM M K. Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method [J]. Opt. Lett., 2005, 30(16): 2092-2094.[15]FERRARO P, NICOLA S D, FINIZIO A, et al.. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging [J]. Appl. Opt., 2003, 42(11): 1938-1946.[16]胡翠英,钟金钢,高应俊,等. 显微数字全息相位重构的窗口选取和倾斜校正 [J]. 光学学报, 2009, 29(12): 3317-3322.HU C Y, ZHONG J G, GAO Y J, et al.. Selection of filter window and correction of tilt aberration in the phase reconstruction of microscopic digital holography [J]. Acta Optical Sinica, 2009, 29(12): 3317-3322. (in Chinese)[17]CASTLEMAN K R. Digital Image Processing [M]. USA: Prentice Hall, 1996: 387-391.
0
浏览量
135
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构