浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
3. 东北师范大学 数学与统计学院,吉林 长春,130000
4. 吉林市松花江中学,吉林 吉林,132000
收稿日期:2011-12-11,
修回日期:2012-04-10,
网络出版日期:2013-07-15,
纸质出版日期:2013-07-15
移动端阅览
王斌 汪宗洋 吴元昊 马鑫雪 卫沛锋 王建立 吕杰. 利用多通道相位差异波前探测法检测自适应光学系统非共光路像差[J]. 光学精密工程, 2013,21(7): 1683-1692
. Calibration of no-common path aberration in AO system by multi-channel phase-diversity[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1683-1692
王斌 汪宗洋 吴元昊 马鑫雪 卫沛锋 王建立 吕杰. 利用多通道相位差异波前探测法检测自适应光学系统非共光路像差[J]. 光学精密工程, 2013,21(7): 1683-1692 DOI: 10.3788/OPE.20132107.1683.
. Calibration of no-common path aberration in AO system by multi-channel phase-diversity[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1683-1692 DOI: 10.3788/OPE.20132107.1683.
针对自适应光学系统非共光路像差检测中遇到的若干实际问题,设计了基于多通道相位差异法的波前探测器,用于在不对光路进行任何改变的前提下定量测量自适应光学系统的第一像面到成像相机之间的像差。与前人的双通道相位差异波前探测器相比,该方法对波前具有更强的约束力,从而能够对目标光源的形状容忍力更强,理论上对波前求解的精度更高。将该方法应用于1.23 m口径自适应光学系统的非共光路的静态像差测量,取得了良好的效果,为光路装调带来了极大的方便。将测得的像差直接用于变形镜的初始偏置,大大提高了成像质量。
A multichannel Phase Diversity(PD) processing method is designed aiming at some practical problems of the nocommon path static aberration calibration in an Adaptive Optics (AO) system. The method could be used to measure the aberration between the first image plane and the imaging CCD focused plane without changing the optical path. Compared with a traditional doublechannel PD detector
the multichannel PD method has stronger restriction to the calculation of wave front. So it has more endurance for the form of object source
much accuracy for wavefront calculation and more measuring ranges. The method has been used to measure the nocommon path aberration of AO system in a 1.23 m telescope
and a good measuring result is obtained. The obtained result is taken as the offset of a Deformable Mirror(DM) to redress the static aberration
and the image resolution becomes much better.
GONSALVES R A, CHILDLA W R. Wave-front sensing by phase retrieval [C]. Application of Digital Image Processing Ⅲ, 1979, 207:32-39.[2]吴元昊,王斌,赵金宇,等.利用相位差异技术恢复宽带白光图像[J]. 光学 精密工程,2010,18(8):1849-1854.WU Y H, WANG B, ZHAO J Y, et al.. Restoration of broadband white light image using phase diversity technique [J]. Opt. Precision Eng., 2010, 18(8): 1849-1854.(in Chinese)[3]PAXMAN R G, SCHULZ T J, FIENUP J R. Joint estimation of object and aberrations by using phase diversity [J]. Opt.Soc.Am., 1992, A9: 1072-1085.[4]PAXMAN R G, SELDIN J H, LFDAHL M G, et al.. Evaluation of phase-diversity techniques for solar-image restoration[J]. The Astrophysical Journal, 1996, 466: 1087-1099.[5]THELEN B J, PAXMAN R G, CARRARA D A, et al.. Maximum a posteriori estimation of fixed aberrations, dynamic aberrations, and the object from phase-diverse speckle data[J]. J.Opt.Soc.Am., 1999, A16: 1759-1768.[6]VOGEl C R. Computational Methods for Inverse Problems[M]. Philadelphia: SIAM Press, 2002.[7]VOGEL C R, CHAN T, PLEMMONS R. Fast algorithms for phase diversity-based blind deconvolution [J]. SPIE, 1998, 3353: 994-1005.[8]LFDAHL M G, BERGER T E, SHINE R S, et al.. Preparation of a dual wavelength sequence of high-resolution solar photospheric images using phase diversity[J]. The Astrophysical Journal, 1998, 495: 965-972.[9]LFDAHL M G, SCHARMER G B. Wave-front sensing and image restoration from focused and defocused solar images[J]. Astron.Astrophys,1994, 107: 243-264.[10]BOLCAR M R. Phase Diversity for Segmented and Muli-Aperture Systems[D]. Rochester, New York: University of Rochester, 2008.[11]MATS G. LOFDAHL, RICHARD L. KENDRICK, et al.. Duncan, a phase diversity experiment to measure piston misalignment on the segmented primary mirror of the keck II telescope[J]. SPIE, 1998, 3356: 1190-1201.[12]BLANC A, FUSCO T, HARTUNG M, et al.. Calibration of NAOS and CONICA static aberrations application of the phase diversity technique[J]. Astron.Astrophys, 2003, 399: 373-383.[13]BLANC A, MUGNIER L M, IDIER J. Marginal estimation of aberrations and image restoration by use of phase diversity [J]. Opt.Soc.Am., 2003, 20(6):1035-1046.[14]韩杏子,胡新奇,俞信. 高分辨率空间光学系统位置误差的无波前传感综合矫正[J]. 光学学报,2011,31(6):264-269. HAN X Z, HU X Q, YU X. Precisely integrated wavefront sensorless calibration of high-resolution space optical system with large position errors [J]. Acta Optica Sinica, 2011,31(6):264-269.(in Chinese)[15]易红伟,李英才,马臻,等. 空间光学成像系统波像差的相位差异估计方法[J]. 光子学报,2009,38(6):2676-2681. YI H W, LI Y C, MA ZH, et al.. Estimation method of wave-front error using phase diversity for space optical imaging system [J]. Acta Photoica Sinica, 2009,38(6):2676-2681.(in Chinese)[16]王欣,赵达尊. 图像噪声对相位变更波前传感的影响研究[J]. 光学学报,2009,29(8):2142-2146.WANG X, ZHAO D Z. Influence of noise to phase diversity wavefront sensing [J]. Acta Optica Sinica, 2009,29(8):2142-2146.(in Chinese)[17]李斐,饶长辉. 高精度相位差波前探测器的数值仿真和实验研究[J]. 光学学报,2011,31(8):0804001. LI F, RAO CH H. Study on phase diversity wavefront sensor[J]. Acta Optica Sinica, 2011,31(8):0804001.(in Chinese)[18]李斐,饶长辉. 利用Cramer-Rao理论研究相位差法的最佳离焦量[J]. 强激光与粒子束, 2011,23(6):1492-1496. LI F, RAO CH H. Optimum defocus diversity in phase diversity wave-front sensing using Cramer-Rao theorem[J]. High Power Laser and Particle Beams, 2011,23(6):1492-1496.(in Chinese)[19]李斐,饶长辉. 相位差法波前传感系统自身误差的分析及消除方法[J]. 强激光与粒子束, 2011,23(3):599-605. LI F, RAO CH H. Analysis and elimination of errors in phase diversity wavefront sensing system[J]. High Power Laser and Particle Beams, 2011,23(3):599-605.(in Chinese)[20]于学刚,刘忠,金振宇,等.波前相位差法探测器的设计[J].天文研究与技术,2010,7(1):55-59.YU X G, LIU ZH, JIN ZH Y, et al.. Design of a phase diversity wavefront sensor[J]. Astronomical Research Technology, 2010,7(1):55-59. (in Chinese)[21]SELDIN J H, PAXMAN R G, Phase-diverse speckle reconstruction of solar data[J]. SPIE, 1994, 2302:268-280.[22]ROGGEMANN M C, WELSH B M. Imaging Through Turbulence[M]. Washington: CRC Press, 1996.[23]王斌,汪宗洋,王建立,等. 双相机相位差异散斑成像技术[J]. 光学 精密工程,2011,19(6):1384-1390.WANG B, WANG Z Y, WANG J L, et al.. Phase-diverse speckle imaging with two cameras[J]. Opt. Precision Eng., 2011, 19(6): 1384-1390.(in Chinese)[24]BYRD R H, LU P, NOCEDAL J, et al.. A limited memory algorithm for bound constrained optimization[R]. Report NAM-08, EECS Department, Northwestern University, 1994.[25]ZHU C, BYRD R H, LU P, et al.. LBFGS-B: fortran subroutines for large-scale bound constrained optimization[R]. Report NAM-11, EECS Department, Northwestern University, 1994.
0
浏览量
106
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构