浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,130033
收稿日期:2012-08-02,
修回日期:2012-10-22,
网络出版日期:2013-07-15,
纸质出版日期:2013-07-15
移动端阅览
陈媛 沈湘衡 王安邦 宋元章. 似然关系模型在航天软件缺陷预测中的应用[J]. 光学精密工程, 2013,21(7): 1865-1872
. Application of probabilistic relational model to aerospace software defect prediction[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1865-1872
陈媛 沈湘衡 王安邦 宋元章. 似然关系模型在航天软件缺陷预测中的应用[J]. 光学精密工程, 2013,21(7): 1865-1872 DOI: 10.3788/OPE.20132107.1865.
. Application of probabilistic relational model to aerospace software defect prediction[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1865-1872 DOI: 10.3788/OPE.20132107.1865.
将似然关系模型在描述和推理多属性类之间关系及其不确定性知识方面的优势用于预测软件缺陷,提出了航天软件缺陷预测模型PRM_METHOD。首先,提出了基于软件测试的软件缺陷分类方法,以软件缺陷类关系为例分析了似然关系模型用于航天软件缺陷预测的理论依据;然后,在对人员能力、缺陷数量特征等数据进行定义和泛化等预处理的基础上,描述了提出的预测模型PRM_METHOD,详细阐述其结构、学习过程以及预测过程,并针对数据集的分类操作提出了基于弥合数据缝隙的k-均值聚类方法。最后,以某航天项目软件为例验证了模型PRM_METHOD的实现过程,并以实际测试工作中产生的历史数据作为训练集和验证集进行实验验证。验证结果显示,验证集的记录与预测结果的平均绝对偏差均值为0.086 8,即模型的预测精度为0.913 2,表明该模型对关联关系较为复杂的航天软件缺陷有较好的预测精度。
An aerospace software defect prediction model PRM_METHOD was proposed by use of the advantage of probabilistic relational model in describing and reasoning the relationship between multi-attribute classes and their uncertainty knowledge. First
a software defect classification method based on software test was proposed
and the theoretical basis of the application of probabilistic relational model to the aerospace software defect prediction was analyzed via the relationship between software defect classes. Then
under the definition and generalization of staff capacity and the feature of defect quantity
the model PRM_METHOD was described with its structure
learning and predict process. Moreover
an improved k-average clustering algorithm based on closing data gap was proposed aim at data set classification operation. Finally
an aerospace software was taken as the example to actualize the model
and the practical testing data were used as the training set and validation set to validate it as well. The results show that the average of mean absolute deviation between the validation set and predict result is 0.086 8
which means the prediction accuracy of the model is 0.913 2. Therefore
the conclusion is that the model PRM_METHOD has better prediction accuracy to the aerospace software defect prediction with a more complex associated relationship.
王俊杰,沈湘衡,张波,等.环境参数与状态参数融合的测试用例集约简方法[J]. 光学 精密工程,2009,17(7): 1678-1685. WANG J J, SHENG X H, ZHANG B, et al.. Optimal test suite generation methods based on the fusion of environment and state parameter [J]. Opt. Precision Eng., 2009, 17(7): 1678-1685. (in Chinese) [2]CHEN Y, SHENG X H, DU P, et al.. Research on software defect prediction based on data mining[C]. the 2nd International Conference on Computer and Automation Engineering(ICCAE), 2010.[3]王青,伍书剑,李明树.软件缺陷预测技术[J].软件学报,2008,9(7): 1565-1580.WANG Q, WU SH J, LI M SH. Software defect prediction [J]. Journal of Software, 2008,9(7): 1565-1580. (in Chinese)[4]KUHN D R, WALLACE D R, GALLO A M. Software fault interactions and implications for software testing [J]. IEEE Transactions on Software Engineering, 2004, 30(6):418- 421.[5]GETOOR L, FRIEDMAN N, KOLLER D, et al.. Learning probabilistic models of relational structure[C]. the Eighteenth International Conference on Machine Learning, 2001.[6]GETOOR L, MIHALKOVA L. Exploiting statistical and relational information on the web and in social media [C]. In Proceedings of the fourth ACM International Conference on Web Search and Data Mining (WSDM '11), 2011:9-10.[7]高滢,齐红,刘杰,等. 结合似然关系模型和用户等级的协同过滤推荐算法[J].计算机研究与发展,2008,45(9): 1463-1469.GAO J, QI H, LIU J, et al.. A collaborative filtering recommendation algorithm combining probabilistic relational models and user grade [J]. Journal of Computer Research and Development, 2008, 45(9): 1463-1469. (in Chinese)[8]LESSMANN S, BAESENS B, MUES C, et al.. Benchmarking classification models for software defect prediction: a proposed framework and novel findings [J]. IEEE Transactions on Software Engineering, 2008, 34(4): 485-496.[9]刘海,郝克刚.软件缺陷数据的分析方法及其实现[J].计算机科学, 2008,8:262-264.LIU H, HAO K G. Method of software defect data analysis and its implementation [J]. Computer Science, 2008, 8: 262-264. (in Chinese)[10]CARD D N. Managing software quality with defects [C]. Computer Software and Applications Conference, COMPSAC 2002, Proceedings 26th Annual International, 2002: 472- 474.[11]魏颖,张波,李丽,等. 基于体系结构的软件可靠性评估[J].光学 精密工程,2010,18(2): 485-490.WEI Y, ZHANG B, LI L, et al.. Architecture-based software reliability evaluation [J]. Opt. Precision Eng., 2010,18(2): 485-490. (in Chinese)[12]胡君,王栋. 空间相机地面实时动态集成测试技术[J]. 光学 精密工程,2011,19(9): 2177-2185.HU J, WANG D. Real-time dynamic integration detection technology of space camera on the ground [J]. Opt. Precision Eng., 2011, 19(9): 2177-2185. (in Chinese)[13]CHEN Y, SHENG X H, DU P, et al.. A software defect prediction algorithm based on probabilistic relational models[C]. IEEE International Conference on Intelligent Computing and Intelligent Systems(ICIS), 2011.
0
浏览量
178
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构