浏览全部资源
扫码关注微信
1. 长春理工大学 电子信息工程学院,吉林 长春,130022
2. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
收稿日期:2012-11-29,
修回日期:2013-02-04,
网络出版日期:2013-07-15,
纸质出版日期:2013-07-15
移动端阅览
杨阳 崔金峰 余毅. 三旋翼飞行器动力学分析及建模[J]. 光学精密工程, 2013,21(7): 1873-1880
. Dynamical analysis and mathematical modeling of tricopter[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1873-1880
杨阳 崔金峰 余毅. 三旋翼飞行器动力学分析及建模[J]. 光学精密工程, 2013,21(7): 1873-1880 DOI: 10.3788/OPE.20132107.1873.
. Dynamical analysis and mathematical modeling of tricopter[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1873-1880 DOI: 10.3788/OPE.20132107.1873.
根据国内外旋翼飞行器的发展趋势,提出了三旋翼飞行器的研究方案。首先,介绍了三旋翼无人飞行器的机械结构,分析了它的整体物理力矩,理论解决了力矩相互抵消的问题。其次,对飞行器的起飞、俯仰、滚转、偏航等姿态进行了数学分析,建立了三旋翼无人飞行器的数学模型。最后,利用PID控制法和线性二次高斯(LQG)控制方法设计了三旋翼飞行器的控制器。实验结果表明,PID控制器振荡时间比较长,次数较多,没有达到理想状态;利用LQG方法对控制器进行了改进,对各个通道阶跃函数及脉冲响应函数仿真图的分析显示,系统改进后响应速度有了提高, 2 s左右受控达到平衡。本文的研究为无人机的姿态控制提供了理论基础。
This paper proposes research schemes for a tricopter based on its developing trend. It focuses on its mechanical structures and physical moments and solves the problem that moments in the system offset each other. Then
it analyzes aircraft attitudes on launching
pitching
rolling and yawing by aerodynamic analysis and establishes a mathematical model for the tricopter. Finally
the PID and Linear Quadratic Gaussian(LQG) control methods are used to design a controller for the tricopter. The results show that the PID method does not achieve the desired states for its long equilibrium time and overmuch oscillations. However
after improving the controller by the LQG method
the simulation experiments on step functions and pulse response functions from different channels show that the response speed of the control has increased
and the balance of control can be implemented by about 2 s. the research can provide theoretical function for controlling aircraft attitudes.
刘丽丽. 四旋翼飞行仿真器的建模及控制方法研究[D]. 长沙:中南大学,2009.LIU L L. Research on the Modeling and Control to a Quadrotor Helicopter Simulator[D]. Changsha: Central South University, 2009. (in Chinese) [2]刘焕晔. 小型四旋翼飞行器飞行控制系统研究与设计[D]. 上海:上海交通大学,2009.LIU H Y. Study and design of flight control systems for small scale quadrotor[D]. Shanghai: Shanghai Jiaotong University. (in Chinese) [3]王树刚. 四旋翼直升机控制问题研究[D]. 哈尔滨:哈尔滨工业大学,2006.WANG S G. Research of Quadrotor Control[D]. Harbin: Harbin Institute of Technology. (in Chinese)[4]SALAZAR-CRUZ S, KENDOUL F, et al.. Real-Time Control of a Small-Scale Helicopter Having Three Rotors[C]. International Conference on Intelligent RObots and Systems, Bejing, P.R. China: IROS, 2006: 2924-2929.[5]SALAZAR-CRUZ S, LOZANO R. Stabilization and nonlinear control for a novel tri-rotor mini-aircraft[C]. Proceedings of International Conference on Robotics and Automation, Barcelone, Spain: IEEE ICRA05, April 2005: 2612-2617.[6]TAYEBI A, MCGILVRAY S. Attitude stabilization of a four-rotor aerial robot[C]. IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas: CDC, 2004,2: 1216-1221.[7]GUENARD N, HAMEL T, MOREAU V. Dynamic modeling and intuitive control strategy for an X4-flyer [C]. International Conference on Control and Automation, Budapest, Hungary: ICCA'05, 2005,1: 141-146.[8]SALAZAR-CRUZ S, KENDOUL F, et al.. Real-Time stabilization of a small three-rotor aircraft[J]. Aerospace and Electronic Systems, 2008, 44(2): 783-794.[9]ESCARENO J, SANCHEZ A, GARCIA O, LOZANO R. Triple tilting rotor mini-UAV: modeling and embedded control of the attitude[C]. American Control Conference, Seattle, Washington, USA: ACC, 2008: 3476-3481.[10]CASTILLO P, DZUL A, LOZANO R. Real-Time stabilization and tracking of a four-rotor mini rotocraft[C]. 43th IEEE conf. Control Systems Technology, July, 2004: 12(4): 510-516.
0
浏览量
156
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构