浏览全部资源
扫码关注微信
1. 南昌工程学院 计算机网络与信息安全研究所,江西 南昌,330099
2. 江西科技师范大学 通信与电子学院,江西 南昌,330013
收稿日期:2012-10-28,
修回日期:2013-03-20,
网络出版日期:2013-07-15,
纸质出版日期:2013-07-15
移动端阅览
邓承志 刘娟娟 汪胜前 朱华生. 保留结构特征的稀疏性正则化图像修复[J]. 光学精密工程, 2013,21(7): 1906-1913
. Feature retained image inpainting based on sparsity regularization[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1906-1913
邓承志 刘娟娟 汪胜前 朱华生. 保留结构特征的稀疏性正则化图像修复[J]. 光学精密工程, 2013,21(7): 1906-1913 DOI: 10.3788/OPE.20132107.1906.
. Feature retained image inpainting based on sparsity regularization[J]. Editorial Office of Optics and Precision Engineering, 2013,21(7): 1906-1913 DOI: 10.3788/OPE.20132107.1906.
以压缩传感和稀疏表示为理论依据,提出了一种基于剪切波变换的稀疏性正则化的图像修复模型,以便更好地保留图像的结构特征。该模型用剪切波作为图像的稀疏表示,以稀疏性作为正则化项;同时基于变量分裂法,采用增广Lagrange优化方法求解最优化问题。另外,通过交替最小化方式来降低计算复杂性。从峰值信噪比(PSNR)、结构相似度(SSIM)、收敛速度和视觉效果等4个方面验证了算法的有效性。结果显示:利用本文算法修复图像的质量明显优于其他算法,获得了更优的PSNR和SSIM值。新的模型无论是在客观还是视觉主观方面都具有更好的性能,同时算法具有更快的收敛速度。得到的结果表明本文算法能够更好地修复图像,获得较好的视觉效果。
By taking compressed sensing and sparse representation as theoretical bases
a sparse regularization image inpainting model based on shear wave transform is proposed to reserve the structure characteristics of an image. The model uses shear wave as sparse representation and sparse as a regularization item.Meanwhile
based on variable splitting method
it uses augmented Lagrange method to solve the optimization model. Furthermore
it reduces the complexity of the calculation through alternating direction method of multipliers. The availability of the algorithm is verified by Peak Signal to Noise Radio(PSNR)
Structural Similarity Index (SSIM)
convergence speed and visual effect. The results indicate that the image inpainting quality by proposed algorithm is better than that by other algorithms
and more optimal PSNR and SSIM can be obtained. The new model has more better performance whether for objective or for visual passitive
moreover
it shows a far quicker convergence rate. It concludes that the algorithm can inpaint images effectively and obtain a better visual effect.
BUGEAU A, BERTALMIO M, CASELLES V, et al.. A comprehensive framework for image inpainting [J] . IEEE Transactions on Image Processing, 2010, 19(10): 2634-2645.[2]赵建. 分数阶微分在图像纹理增强中的应用 [J]. 液晶与显示, 2012, 27(1): 121-124.ZHAO J. Fractional differential and its application in image texture enhancement [J] . Chinese Journal of Liquid Crystals and Displays, 2012, 27(1): 121-124. (in Chinese)[3] 王昊京, 王建立, 王鸣浩, 等. 采用双线性插值收缩的图像修复方法 [J] . 光学 精密工程, 2010, 18(5): 1234-1241. WANG H J, WANG J L, WANG M H, et al.. Efficient image inpainting based on bilinear interpolation downscaling [J] . Opt. Precision Eng., 2010, 18(5): 1234-1241. (in Chinese)[4]BERTALMIO M, VESE L, SAPIRO G, et al.. Simultaneous structure and texture inpainting [J] . IEEE Transactions on Image Processing, 2003, 12(8): 882-889.[5]韩希珍, 陈朝东, 赵建. 基于PDE的非线性图像去噪与增强 [J] . 液晶与显示, 2011, 26(1): 111-114.HAN X Z, CHEN C D, ZHAO J. Nonlinear image de-noising and enhancement based on PDE [J] . Chinese Journal of Liquid Crystals and Displays, 2011, 26(1): 111-114. (in Chinese)[6]DONG B, HUI J, LI J, et al.. Wavelet frame based blind image inpainting [J] . Applied and Computational Harmonic Analysis, 2012, 32(2): 268-279. [7]冯亮, 王平, 许延发, 等. 运动模糊退化图像的双字典稀疏复原 [J] . 光学 精密工程, 2011, 19(8): 1982-1989.FENG L, WANG P, XU T F, et al.. Dual dictionary sparse restoration of blurred images [J] . Opt. Precision Eng., 2011, 19(8): 1982-1989. (in Chinese)[8]XU Z B, SUN J. Image inpainting by patch propagation using patch sparsity [J] . IEEE Transactions on Image Processing, 2010, 19(5): 1153-1165.[9]李民, 程建, 李小文, 等. 非局部学习字典的图像修复 [J]. 电子与信息学报, 2011, 33(11): 2672-2678.LI M, CHENG J, LI X W, et al.. Image inpainting based on non-local learned dictionary [J]. Journal of Electronics & Information Technology, 2011, 33(11): 2672-2678. (in Chinese)[10]EASLEY G, LABATE D, LIM W Q. Sparse directional image representations using the discrete shearlet transform [J]. Applied Computational Harmonic Analysis, 2008, 25(1):25-46.[11]AFONSO M B, FIGUEIREDO M. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems [J]. IEEE Transactions on Image Processing, 2011, 20(3): 681-695.[12]BECK A T. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.[13]BECKER S, BOBIN J, CANDES E. NESTA: A fast and accurate first-order method for sparse recovery [J]. SIAM Journal on Imaging Sciences, 2011, 4(1): 1-39.[14]姚军财. 基于人眼对比度敏感视觉特性的图像质量评价方法 [J] . 液晶与显示, 2011, 26(3): 390-396.YAN J C. Image quality assessment method based on contrast sensitivity characteristics of human vision system [J] . Chinese Journal of Liquid Crystals and Displays, 2011, 26(3): 390-396. (in Chinese)
0
浏览量
77
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构