浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春,130033
2. 中国科学院大学 北京,100039
收稿日期:2013-01-04,
修回日期:2013-03-18,
网络出版日期:2013-08-20,
纸质出版日期:2013-08-15
移动端阅览
高松涛 王高文 张健 隋永新 杨怀江. 用计算全息图校正非球面的畸变[J]. 光学精密工程, 2013,21(8): 1929-1935
GAO Song-tao WANG Gao-wen ZHANG Jian SUI Yong-xin YANG Huai-jiang. Correction of distortion in asphere testing with computer-generated hologram[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 1929-1935
高松涛 王高文 张健 隋永新 杨怀江. 用计算全息图校正非球面的畸变[J]. 光学精密工程, 2013,21(8): 1929-1935 DOI: 10.3788/OPE.20132108.1929.
GAO Song-tao WANG Gao-wen ZHANG Jian SUI Yong-xin YANG Huai-jiang. Correction of distortion in asphere testing with computer-generated hologram[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 1929-1935 DOI: 10.3788/OPE.20132108.1929.
针对用计算全息图(CGH)对非球面进行检测时出现的非对称畸变,分析了3种基本的畸变模型,提出了一种有效的校正非对称畸变的方法。该方法采用较少的拟合参数即可实现对非对称畸变的精确校正,从而可以较大程度地减少畸变校正所需要的数据点对,避免过度拟合效应。通过光学仿真模拟分析了整个干涉仪系统的畸变,并利用以上方法对畸变进行了校正。仿真结果显示,畸变校正的相对残差小于0.2%。最后,设计并制作了处于离轴工作状态的CGH,并用此CGH对非球面进行了检测。利用上述畸变校正方法对测量的非球面面形进行校正,并用校正之后的结果进行加工迭代,最终非球面面形的收敛精度达到1.8 nm(RMS),得到的结果验证了提出的畸变校正方法的可靠性。
On the basis of the asymmetric distortion from asphere measurement by a Computer-generated Hologram(CGH)
three basic distortion models were analyzed
and an effective correction method for asymmetric distortion was proposed. By using a few fitted parameters
the method can correct the asymmetric distortion accurately
reduce data point pairs needed by distortion correction and can avoid over-fitting effect. Furthermore
the distortion of whole interferometric system was simulated
and its distortion was corrected by the proposed method. The simulating result shows that the relative residual of the correction is less than 0.2%. Finally
an off-axis CGH was designed and fabricated to verify the reliability of the correcting method and an asphere surface was tested with this CGH. Then
the correcting method mentioned above was used to correct the testing result
and the correcting result was taken to fabricate the asphere iteratively. The experiments show that the aspheric surface figure converges at 1.8 nm RMS (Root Mean Square) eventually. These results verify the reliability of the correction method.
吴栋,朱日宏,陈磊,等.抗振型移相干涉仪中PZT移相器的改进[J].光学 精密工程,2003,11(6): 567-571.WU D, ZHU R H, CHEN L, et al.. Improvement of PZT phase shifter in vibration-resistant phase-shifting interferometer [J]. Opt. Precision Eng., 2003,11(6):567-571 . (in Chinese) [2]YU Y J, ZHANG B H, JIAO Y F. Algorithms of phase-shifting interferometer via wavelength tuning [J]. Opt. Precision Eng.,2003,11(6):560-566.[3]PAUL E M, THOMAS G B, DUNCAN T M. Measurement and calibration of interferometric imaging aberrations [J]. Appl.Opt., 2000, 39(34):6421-6429.[4]ZHAO C Y, BURGE H. Imaging aberrations from null correctors [J]. SPIE, 2007,6723:67230L1-63270L12.[5]ZHOU P, BURGE H, ZHAO C Y. Imaging issues for interferometric measurement of aspheric surfaces using CGH null correctors [J]. SPIE, 2010,7790: 7790L1-7790L12.[6]BURGE H, ZHAO C Y, ZHOU P. Imaging issues for interferometry with CGH null correctors [J]. SPIE, 2010, 7739: 77390T1-77390T12.[7]刘满林,杨旺,许伟才. 干涉仪成像畸变引起测量误差的校正方法[J]. 光学 精密工程,2011,19(10):2349-2354.LIU M L, YANG W, XU W C. Calibration of measuring error caused by interferometric imaging distortion [J]. Opt. Precision Eng., 2011,19(10): 2349-2354.(in Chinese)[8]王孝坤. 子孔径拼接检测非球面时调整误差的补偿[J]. 中国光学, 2013,6(1): 88-95.WANG X K. Compensation of misalignment error on testing aspheric surface by subaperture stitching interferometry [J]. Chinese Optics, 2013,6(1): 88-95. (in Chinses)[9]李锐钢,郑立功,薛栋林,等. 大口径高次、离轴非球面干涉测量中投影畸变的标定方法[J]. 光学 精密工程,2006,14(4): 533-538.LI R G, ZHENG L G, XUE D L, et al.. Calibration method for projection distortion in interferometric testing high order and off-axis aspheric surface with big aperture [J]. Opt. Precision Eng., 2006,14(4):533-538.(in Chinese) [10]王会峰. 一种成像测量图像径向几何畸变的校正方法[J]. 应用光学,2010,31(1):55-59.WANG H F. Radial geometrical distortion correction in imaging measurement system [J]. Journal of Applied Optics,2010,31(1):55-59. (in Chinese)[11]ZHAO C Y, BURGE H. An orthonormal series of vector polynomials in a unit circle, part I: basis set derived from gradients of Zernike polynomials [J]. Opt.Express, 2007, 15(26): 18014-18024.[12]ZHAO C Y, BURGE H. An orthonormal series of vector polynomials in a unit circle, part II: completing the basis set [J]. Opt.Express, 2008, 16(9): 6586-6591.[13]ZHAO C Y, BURGE H. Orthonormal vector polynomials in a unit circle, application: fitting mapping distortions in a null test [J]. SPIE,2009, 7426: 74260V1-74260V8.[14]NOVAK M, ZHAO C Y, BURGE H. Distortion mapping correction in aspheric null testing [J]. SPIE,2008,7063:7063131-7063138.[15]WANG J H, SHI F H, ZHANG J, et al.. A new calibration model of camera lens distortion [J]. Pattern Recognition, 2008,41:607-615.[16]BROWN D C. Decentering distortion of lenses [J]. Photogrammetric Eng. Remote Sensing, 1966, 32(3):444-462.[17]WENG J Y, COHEN P, HERNIOU M. Camera calibration with distortion models and accuracy evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(10):965-980.[18]黎发志,罗霄,赵晶丽,等. 离轴非球面的计算全息图高精度检测技术[J]. 光学 精密工程,2011,19(4):709-716.LI F ZH, LUO X, ZHAO J L, et al.. Testing of off-axis aspheric surfaces with CGH [J]. Opt. Precision Eng.,2011,19(4):709-716.(in Chinese)[19]PARIANI G, TRESOLDI D, SPANO P, et al.. Testing large flats with computer generated holograms [J]. SPIE, 2012,8450:84500Z1-84500Z8.[20]MASARU K, MIKIO K. Interferometric testing for off-axis aspherical mirrors with computer-generated holograms [J]. Appl.Opt., 2012, 51(19):4291-4297.[21]武建芬,卢振武,张红鑫,等. 光学非球面离子束加工模型及误差控制[J]. 光学 精密工程,2009,17(11):2678-2683.WU J F, LU ZH W, ZHANG H X, et al.. Model of ion beam figuring in aspheric optics and its error control [J]. Opt. Precision Eng.,2009,17(11):2678-2683.(in Chinese)
0
浏览量
143
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构