浏览全部资源
扫码关注微信
华南理工大学 土木与交通学院 工程力学系,广东 广州,510641
收稿日期:2013-02-21,
修回日期:2013-04-01,
网络出版日期:2013-08-20,
纸质出版日期:2013-08-15
移动端阅览
姚小虎 陈达 孙玉刚 欧智成 李函洲. 耦合场中小尺寸碳纳米管的组合扭转屈曲行为[J]. 光学精密工程, 2013,21(8): 2031-2037
YAO Xiao-hu CHEN Da SUN Yu-gang OU Zhi-cheng LI Han-zhou. Combined torsional buckling of small size carbon nanotubes in multi-field coupling[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2031-2037
姚小虎 陈达 孙玉刚 欧智成 李函洲. 耦合场中小尺寸碳纳米管的组合扭转屈曲行为[J]. 光学精密工程, 2013,21(8): 2031-2037 DOI: 10.3788/OPE.20132108.2031.
YAO Xiao-hu CHEN Da SUN Yu-gang OU Zhi-cheng LI Han-zhou. Combined torsional buckling of small size carbon nanotubes in multi-field coupling[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2031-2037 DOI: 10.3788/OPE.20132108.2031.
针对小尺寸碳纳米管在多物理场耦合作用下的组合扭转屈曲问题,提出了基于非局部理论耦合场作用下的力学模型,并研究了该模型的组合扭转屈曲行为。首先,采用连续弹性壳模型,引进热-电-力多场耦合作用下的本构关系,通过引入非局部弹性理论来考虑小尺寸碳纳米管的尺度效应;然后针对多壁碳纳米管层间范德华力和周边弹性介质的影响,建立了基于非局部理论多场耦合作用下碳纳米管的屈曲控制方程。最后,在轴力组合扭转载荷及温度与电压变化影响的工况下,研究了各因素对碳纳米管组合扭转屈曲行为的影响。得到的结果显示了小尺寸碳纳米管组合扭转屈曲行为在多场耦合作用下的响应,揭示了各物理场与组合扭转屈曲行为的关系;同时指出非局部理论下的屈曲载荷与经典理论下的屈曲载荷比值总小于1,说明经典理论高估了小尺寸碳纳米管的组合扭转屈曲行为。
For the combining torsional buckling of small size Carbon Nanotubes (CNTs) in the multi-field coupling condition
a mechanical model was established in a couple field based on nonlocal theory and the combining torsional buckling behavior of the model was studied. Firstly
the constitutive relation was introduced under thermo-electro-mechanical loadings by using an elastic shell model of continuum mechanics. Then
the nonlocal elasticity theory was induced to discuss the scale effect of the small size carbon nanotubes
meanwhile
in consideration of the van der Waals forces and the effect of surrounded elastic medium
the generalized governing equation of buckling for CNTs was established in the multi-field coupling based on nonlocal theory. With applied torque and torsion-related axial load
as well as changed temperatures and voltage loads
the influences of different factors on the combining torsional buckling behaviors was calculated numerically. Finally
the conclusion demonstrates the response of the combining torsional buckling of small size carbon nanotubes (CNTs) in the multi-field coupling condition
which reveals the relation between combined torsional buckling of small size CNTs and each field. Moreover
it shows that the ratio of critical buckling load between nonlocal and local theories is always smaller than 1
which indicates that the torsional buckling of small size CNTs is overestimated in classical theory.
HAN Q, LU G. Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium [J]. European Journal of Mechanics-A/Solids, 2003, 22(6): 875-883.[2]WANG X, YANG H K, DONG K. Torsional buckling of multi-walled carbon nanotubes [J]. Materials Science and Engineering: A, 2005, 404(1-2): 314-322.[3]HAN Q, YAO X H, LI L F, Theoretical and numerical study of torsional buckling of multiwall carbon nanotubes [J]. Mechanics of Advanced Materials and Structures, 2006, 13(4): 329-337.[4]YANG H K, WANG X. Torsional buckling of multi-wall carbon nanotubes embedded in an elastic medium [J]. Composite Structures, 2007, 77(2): 182-192.[5]YAO X H, HAN Q. Torsional buckling of a double-walled carbon nanotube under the action of coupled thermo-mechanical load [J]. Acta Physica Sinica, 2008, 57(8): 5056-5062.[6]ZHANG L C, SHEN H S. Buckling and post buckling of single-walled carbon nanotubes under combined axial compression and torsion in the thermal environments [J]. Physical Review B, 2007, 75(4):045408.[7]YAO X H, HAN Q. Buckling analysis of multiwalled carbon nanotubes under torsional load coupling with temperature change [J]. Journal of Engineering Materials and Technology, 2006, 128(3):419-427.[8]SUN Y G, YAO X H, HAN Q, Combined torsional buckling of double-walled carbon nanotubes with axial load in the multi-field coupled condition [J]. Science China Physics, Mechanics and Astronomy, 2011, 54(9): 1059-1065.[9]ERINGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves [J]. Journal of Applied Physics, 1983, 54(9):4703-4710.[10]ARASH B, WANG Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes [J].Computational Material Science, 2012, 51(1): 303-313.[11]GHORBANPOUR A A, MOHAMMADIMEHR M, SAIDI A R, et al.. Thermal buckling analysis of double-walled carbon nanotubes considering the small-length effect [J]. Mechanical Engineering Science, 2011, 225(1):248-256.[12]ANSARI R, ROUHI H, SAHMANI S. Thermal effect on axial buckling behavior of multi-walled carbon nanotubes based on nonlocal shell model[J]. Physica E: Low-dimensional Systems and Nanostructures, 2011, 44(2):373-378.[13]NARENDAR S, GOPALAKRISHNAN S. Critical buckling temperature of single-walled carbon nantubes embedded in a one-paremeter elastic medium based on nonlocal continuum mechanics [J]. Physica E Low-dimensional Systems and Nanostructures, 2011, 43(6):1185-1191.[14]KHADEMOLHOSSEINI F, RAJAPAKSE R K N D, NOJEH A. Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models [J]. Computational Material Science, 2010, 48(4): 736-742.[15]SAITO R, MATSUO R, KIMURA T, et al.. Anomalous potential barrier of double-wall carbon nanotube [J]. Chemical Physics Letters, 2001, 348(3-4):187-193.[16]SAI N, MELE E J. Microscopic theory for nanotube piezoelectricity [J]. Physical Review B, 2003, 68(24): 241405(R).[17]HAO M J, GUO X M, WANG Q. Small-scale effect on torsional buckling of multi-walled carbon nanotubes [J]. European Journal of Mechanics A/Solids 2010, 29(1): 49-55.[18]MOHAMMADIMEHR M, SAIDI A R, GHORBANPUR A A, et al.. Torsional buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory [J]. Journal of Mechanical Science and Technology, 2010, 24(6): 1289-1299.
0
浏览量
71
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构