浏览全部资源
扫码关注微信
1. 中国科学院 国家天文台南京天文光学技术研究所,江苏 南京,210042
2. 中国科学院大学 北京,100039
3. 中国科学院 南京天文光学技术研究所 天文光学技术重点实验室,江苏 南京,210042
收稿日期:2013-01-21,
修回日期:2013-03-04,
网络出版日期:2013-08-20,
纸质出版日期:2013-08-15
移动端阅览
杨世海 王国民. 天文光学望远镜摩擦驱动滑移动态检测与修正[J]. 光学精密工程, 2013,21(8): 2056-2063
YANG Shi-hai Guo-min WANG. Detection and Correction of Slippage from Friction Drive for Astronomical Optical Telescope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2056-2063
杨世海 王国民. 天文光学望远镜摩擦驱动滑移动态检测与修正[J]. 光学精密工程, 2013,21(8): 2056-2063 DOI: 10.3788/OPE.20132108.2056.
YANG Shi-hai Guo-min WANG. Detection and Correction of Slippage from Friction Drive for Astronomical Optical Telescope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2056-2063 DOI: 10.3788/OPE.20132108.2056.
考虑滑移对摩擦驱动望远镜精度的影响,提出了天文光学望远镜摩擦驱动滑移动态检测与修正的控制方法。建立了滑移动态检测系统、正压力主动调节系统、负载波动模拟和检测系统。用钢带光栅尺检测动负载位置,由同轴安装的角度编码器检测主动摩擦轮位置,根据减速比 的变化判断主动轮和从动轮之间是否发生了相对滑移。主控单元PMAC用来实时控制正压力电机进行压力修正并随之修正系统控制算法以提供足够的摩擦驱动力来减轻、消除滑移现象。实验表明:该方法能及时修正望远镜驱动系统出现的滑移,从而提高望远镜跟踪精度及可靠性。在最严重滑移的情况下,系统可在100 ms内判断出滑移,74.2 s完成校正并恢复望远镜的高精度跟踪。此方法既可用于单点摩擦驱动也可用于多点摩擦驱动,能够有效解决非线性干扰带来的滑移问题。
As slippage influences the tracking error of a telescope with friction drive
a way to detect and correct the slippage of friction drive was proposed for astronomical optical telescopes. A slippage dynamic detection system
a normal pressure active adjustment system
and a simulation and detection system of load fluctuation were established. The position of dynamic load was measured by a tape encoder and the position of active drive wheel was measured by a coaxial angle encoder. Then
the slippage was detected by transmission ratio. The PMAC was used as a main control unit to control the normal pressure motor to adjust pressure and the control algorithm was also modified. By above way
enough friction drive force was obtained and the slippage was alleviated or eliminated. Experimental results indicate that the way can correct the slippage in time
improve the tracking precision of the optical astronomical telescopes and increase the stability of the drive system. In the most severe case
the friction drive system can resume the high accuracy tracking by detecting the slippage in 100 ms and completing the correction in 74.2 s. The method can be used for both single-point friction drive and multi-point friction drive and can solve the slippage caused by nonlinear disturbance.
CUI X Q, ZHAO Y H, CHU Y Q, et al.. The large sky area multi-object fiber spectroscopic telescope(LAMOST)[J]. Research in Astronomy and Astrophysics, 2012, 12(9): 1197-1242.[2]RAYBOULD K, GILLETT P, HATTON P. Gemini telescope structure design [J].SPIE, 1994, 2199: 376-391.[3]PIERRE Y B. The Design and Construction of Large Optical Telescopes [M]. New York: Springer-Verlag Inc, 2003.[4]NELSON J. TMT status report [J]. SPIE, 2006, 6267: 1-17.[5]李祝莲,熊耀恒. 1.2m地平式望远镜伺服控制和传动系统的特性单点和多点摩擦传动的力学特性(一)[J]. 天文研究与技术:国家天文台台刊, 2005, 2(1): 54-59.LI Z L, XIONG Y H. The property of servo-control and drive system for 1.2 m Alt-Az telescope- mechanics characteristics of single and multi-point friction drives(1)[J]. Astronomical Research & Technology, 2005, 2(1): 54-59. (in Chinese)[6]KIBRICK R, ALLEN S. Method for measuring and reducing slippage of friction rollers employed in off-axis coupling of position encoders to telescopes [J]. SPIE, 1990, 1236: 777-789.[7]GONZLEZ J C, GRAN P A. Telescope CANARIAS conceptual design [R]. 1997.[8]王国民,姚正秋,马礼胜,等. 大型天文望远镜高精度摩擦传动的研究[J]. 光学 精密工程, 2004, 12(6): 592-597.WANG G M, YAO Z Q, MA L S, et al.. High precision friction drive of large telescope [J]. Opt. Precision Eng., 2004, 12(6): 592-597. (in Chinese)[9]汪达兴,杜福嘉. 大型天文望远镜摩擦传动系统低速特性的研究[J]. 光学 精密工程, 2006, 14(2): 274-278.WANG D X, DU F J. Ultra-low speed research on friction drive for astronomical telescope[J]. Opt. Precision Eng., 2006, 14(2): 274-278. (in Chinese)[10]王国民. 超低速高精度滚动摩擦传动的研究及其应用[D]. 南京:中国科学院南京天文光学技术研究所, 2005.WANG G M. Ultra-low velocity and high precision friction drive study and its application[D]. Nanjing:Nanjing Institute of Astronomical Optics& Technology/Chinese Academy of Sciences, 2005.(in Chinese)[11]韩佩彤,李新国,刘芸. 基于PMAC的伺服系统误差补偿方法研究[J]. 传感器与微系统, 2012, 31(8): 12-14.HAN P T, LI X G, LIU Y. Research on error compensation method of servo system based on PMAC[J]. Transducer and Microsystem Technologies, 2012, 31(8):12-14. (in Chinese)[12]张斌,李洪文,郭立红,等. 变结构PID在大型望远镜速度控制中的应用[J]. 光学 精密工程, 2010, 18(7): 1613-1619.ZHANG B, LI H W, GUO L H, et al.. Application of variable structure PID in velocity control for large telescope[J]. Opt. Precision Eng., 2010, 18(7): 1613-1619. (in Chinese)
0
浏览量
84
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构