浏览全部资源
扫码关注微信
1. 清华大学 摩擦学国家重点实验室 北京,100084
2. 北京工商大学 材料与机械工程学院 北京,100048
收稿日期:2013-02-01,
修回日期:2013-03-22,
网络出版日期:2013-08-20,
纸质出版日期:2013-08-15
移动端阅览
黄雅婷 孟春玲 董秀萍 路新春. 铜互连兆声清洗中结构损伤预测的有限元分析[J]. 光学精密工程, 2013,21(8): 2064-2070
HUANG Ya-ting MENG Chun-ling DONG Xiu-ping LU Xin-chun. Finite Element Analysis of Failure in Cu Interconnect Megasonic Cleaning[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2064-2070
黄雅婷 孟春玲 董秀萍 路新春. 铜互连兆声清洗中结构损伤预测的有限元分析[J]. 光学精密工程, 2013,21(8): 2064-2070 DOI: 10.3788/OPE.20132108.2064.
HUANG Ya-ting MENG Chun-ling DONG Xiu-ping LU Xin-chun. Finite Element Analysis of Failure in Cu Interconnect Megasonic Cleaning[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2064-2070 DOI: 10.3788/OPE.20132108.2064.
尽管用于铜及低介电材料(low-k材料)互联加工的兆声清洗工艺可以提高纳米颗粒的去除率,但清洗过程中的声波能量会破坏微小器件结构从而导致器件功能失效。本文采用有限元分析法分析和预测了兆声波的破坏作用,研究了铜及low-k材料互联结构在兆声清洗过程中的应力分布及变形。基于ABAQUS软件,采用二维有限元模型对循环布线图形当中的一个典型元胞在空化气泡破裂冲击下的应力应变进行分析,并讨论了它的破坏形式和破坏规律。结果表明,最大应力集中在铜及low-k材料键合处将导致low-k材料分层。当线宽为22 nm时,应力和结构变形达最大值,分别为1379 MPa和3.074 nm;之后随线宽增加最大应力应变值均减小。另外,兆声频率增大不改变应力应变分布规律,对应力应变极值影响亦不明显。分析及预测结果与工业实践得到的结果相符。
Although megasonic cleaning can remove effectively nano particles in the Cu/low-k interconnects post-Chemical Mechanic Polishing (post-CMP) cleaning
the megasonic energy in cleaning may also cause extensive damage to microstructures. To predict the damage
the structural deformation and the stress distribution of Cu and low-k materials in megasonic cleaning were examined with Finite Element Analysis(FEA). Two-dimensional models were used in analysis of the stress-strain of a typical cell impacted by a caviation bubble in the circulate wiring pattern and all of the simulations were performed with ABAQUS. The results show that the maximum stress is concentrated in the binding area between Cu and low-k
which will result in the delamination of low-k materials. When the line width is 22 nm
the stress and deformation reach the larges values by 1379 MPa and 3.074 nm respectively. When the line width is more than 22 nm
the max stress and max deformation decrease with increase of Cu line width. The increasing frequency will not change the of stress distribution and displacement. The results are IN agreement with the defect found in industrial applications.
International Technology Roadmap for Semiconductors: Interconnect [R]. 2009ed.,Semiconductor Industry Association, 2009.[2]雷红. CMP后清洗技术的研究进展[J].半导体技术, 2008,5: 369-373.LEI H. Advances in post-CMP cleaning technology [J]. Semiconductor Technology, 2008,5:369-373. (in Chinese)[3]BUSNAINA A A, KASHKOUSH I I, GALE G W. An experimental-study of megasonic cleaning of silicon-wafers [J]. J Electrochem Soc.,1995,142(8):2812-2817.[4]QI Q, BRERETON G. Mechanisms of removal of micron-sized particles by high-frequency ultrasonic waves [J]. IEEE T Ultrason Ferr, 1995,42(4):619-629.[5]KIM W, KIM TH, CHOI J. Mechanism of particle removal by megasonic waves [J]. Appl. Phys. Lett., 2009,94:081908.[6]KAPILA V, DEYMIER P A, SHENDE H, et al.. Acoustic streaming effects in megasonic cleaning of EUV photomasks: A continuum model [J]. SPIE, 2005,5992:59923X-1-10.[7]REINHARDT K A, REIDY R F, DAVIOT J. Low-k/Cu cleaning and drying, in: Handbook of Cleaning for Semiconductor Manufacturing-Fundamentals and Applications [M]. Wiley, New York, 2011.[8]YAMADA Y, KONISHI N, NOGUCHI J, et al.. Influence of CMP slurries and post-CMP cleaning solutions on Cu interconnects and TDDB reliability[J]. J. Electrochem. Soc., 2008,155(7):H485-H490.[9]MINSIER V, PROOST J. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning [J]. Ultrasonic Sonochemistry, 2008,15:598-604.[10]方慧,郭培基,余景池.液体喷射抛光技术材料去除机理的有限元分析[J]. 光学 精密工程,2006,13(2).FANG H, GUO P J, YU J C. Analysis of material removal mechanism in fluid jet polishing by finite element method [J]. Opt. Precision Eng., 2006, 13(2). (in Chinese)[11]王续跃,许卫星,徐文骥,等.硅片激光弯曲成形的数值模拟与实验[J].光学 精密工程,2008,16(4):605-610.WANG X Y, XU W X, XU W J, et al.. Simulation and experiment of laser bending of silicon shee [J]. Opt. Precision Eng., 2008,16(4):605-610.(in Chinese)[12]吴东江,许媛,王续跃,等.激光清洗硅片表面Al2O3颗粒的试验和理论分析[J].光学 精密工程,2006,14(5):764-770.WU D J, XU Y, WANG X Y, et al.. Experimental and theoretical study on laser cleaning Al2O3 particle on silicon wafer surface [J]. Opt. Precision Eng., 2006,14(5):764-770. (in Chinese)[13]BENJAMIN T B, ELLIS A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries [C]. Phil. Trans. R. Soc. London, Series A, Math. Phys. Sci., 1966:221-240.[14]司丽娜.集成电路平坦化过程机械作用机理仿真研究[D].北京:清华大学,2011.SI L N. Mechanical effect mechanism during planarization technique in ULSI process studied by molecular dynamics simulation [D].Beijing: Tsinghua University,2011. (in Chinese)
0
浏览量
85
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构