浏览全部资源
扫码关注微信
1. 北京师范大学 信息科学与技术学院 北京,100875
2. 北京师范大学 遥感科学国家重点实验室 北京,100875
收稿日期:2013-03-10,
修回日期:2013-04-13,
网络出版日期:2013-08-20,
纸质出版日期:2013-08-15
移动端阅览
张立保 丘兵昌. 基于快速方向预测的高分辨率遥感影像压缩[J]. 光学精密工程, 2013,21(8): 2095-2102
ZHANG Li-bao QIU Bing-chang. Remote sensing image compression based on fast direction prediction[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2095-2102
张立保 丘兵昌. 基于快速方向预测的高分辨率遥感影像压缩[J]. 光学精密工程, 2013,21(8): 2095-2102 DOI: 10.3788/OPE.20132108.2095.
ZHANG Li-bao QIU Bing-chang. Remote sensing image compression based on fast direction prediction[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2095-2102 DOI: 10.3788/OPE.20132108.2095.
针对传统的自适应方向提升小波变换(ADL-DWT)算法在高分辨率遥感影像压缩中计算复杂度过高的问题,提出一种新的基于方向预测的提升小波变换(DP-LWT)算法,实现了高分辨率遥感影像的快速、高效压缩。新算法首先将高分辨率遥感影像分为若干不重叠子块,然后采用梯度算子快速预测遥感影像中每个图像块的最佳提升方向,并沿着最佳预测方向插值完成方向提升小波变换,最后进行SPIHT编码。实验结果表明,新算法有效削弱了遥感影像各子带中非水平与非垂直方向的高频系数;与传统自适应方向提升小波变换相比,在重建高分辨率遥感影像峰值信噪比基本相同的情况下,有效减少了小波变换中方向预测的计算复杂度。
As traditional Adaptive Direction Lifting based-Discrete Wavelet Transform(ADL-DWT) has higher computational complexity in the compression of high-resolution remote sensing images
this paper proposes a new lifting wavelet transform scheme based on Direction Prediction called DP-LWT to implement the fast and efficient compression of high-resolution remote sensing images. The new algorithm first divides a high-resolution remote sensing image into a number of non-overlapping sub-blocks. Then
the gradient operator is used to predict the best lifting direction of every sub-block in the remote sensing image quickly
and completes the direction lifting wavelet transform by the interpolation along the best lifting direction. Finally
the remote sensing image is coded by SPIHT. The experimental results show that the new algorithm effectively weakens the high-frequency coefficients on the non-horizontal and non-vertical directions of every image subband. Compared with the traditional ADL
the DP-LWT can effectively reduce the time computational complexity of directional prediction in lifting wavelet transform
and keeps the Peak Signal to Noise Ratio (PSNR) of the reconstructed high-resolution remote sensing image to be the same as that of the ADL basically.
TAUBMAN D, ZAKHOR A. Orientation adaptive subband coding of images [J]. IEEE Trans. Image Process,1994, 3(4):421-437.[2]DING W P. Adaptive directional lifting-based wavelet transform for image coding [J]. IEEE Trans. Image Process,2007,16(2):416-427.[3]张立保,王鹏飞. 基于自适应方向提升整数小波与优化阈值的遥感图像编码[J]. 中国激光,2010,37:225-228.ZHANG L B, WANG P F. Remote sensing image coding based on adaptive directional lifting integer wavelet and optimal threshold [J]. Chinese Journal of Lasers, 2010, 37:225-228.(in Chinese)[4]LI B,YANG R,JIANG H X. Remote-sensing image compression using two-dimensional oriented wavelet transform [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 236-250.[5]邓家先. 基于重要系数提升的遥感图像压缩[J]. 光学 精密工程,2006,14(5):910-916.DENG J X. A remote-sensing image coding algorithm based on significant coefficients lifting [J]. Opt. Precision Eng., 2006, 14(5):236-250.(in Chinese)[6]尹传历,李嘉全. 基于位平面的嵌入式超光谱图像压缩系统[J]. 液晶与显示,2012, 27(2):245-249.YIN C L, LI J Q. Embedded hyper-spectral Image compression system based on bit-plane [J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(2):245-249 .(in Chinese)[7]孙航,冯强.基于FPGA的红外序列图像动态压缩显示[J]. 液晶与显示,2011,26(4):551-554.SUN H, FENG Q. Infrared sequence image dynamic compression display based on FPGA [J]. Chinese Journal of Liquid Crystals and Displays, 2011,(4):551-554.(in Chinese)[8]TAUBMAN D S,MARCELLIN M W. JPEG2000: Image Compression Fundamentals, Standards and Practice [M]. Norwell, MA: Kluwer, 2002.[9]SWELDENS W. The lifting scheme: A custom-design construction of biorthogonal wavelets [J]. Appl. Comput. Harmon. Anal., 1996, 3(2):186-200.[10]DAUBECHIES I, SWELDENS W. Factoring wavelet transform into lifting steps [J]. Fourier Anal. Appl,1998, 4(3):245-267.[11]DONOHO D L. Wedgelets: Nearly minimax estimation of edges [J]. Ann. Statist,1999, 27(3):859-897.[12]VELISAVLJEVIC V, BEFERULL-LOZANO B, et al.. Directionlets: Anisotropic multi-directional representation with separable filtering [J]. IEEE Trans. Image Process,2006, 15(7): 1916-1933.[13]LU Y,DO M N. CRISP-Contourlet: A critically-sampled directional multiresution image representation [C]. SPIE Conf. Wavelet Appl. Signal Image Processing,2003.[14]解成俊,刘艳滢. 基于提升方案与SPIHT算法相结合用于图像的无损压缩[J]. 光学 精密工程,2002,10(6):564-568.XIE CH J, LIU Y Y, LI X J, et al.. Research on the application of lifting scheme in image lossless compression [J]. Opt. Precision Eng., 2002,10(6): 564-568.(in Chinese)
0
浏览量
113
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构