浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 电子学研究所 北京,中国,100190
3. 中国科学院 对地观测与数字地球科学中心 北京,100094
收稿日期:2012-12-18,
修回日期:2013-03-19,
网络出版日期:2013-08-20,
纸质出版日期:2013-08-15
移动端阅览
刘志文 刘定生 刘鹏. 应用尺度不变特征变换的多源遥感影像特征点匹配[J]. 光学精密工程, 2013,21(8): 2146-2153
LIU Zhi-wen LIU Ding-sheng LIU Peng . SIFT feature matching algorithm of multi-source remote image[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2146-2153
刘志文 刘定生 刘鹏. 应用尺度不变特征变换的多源遥感影像特征点匹配[J]. 光学精密工程, 2013,21(8): 2146-2153 DOI: 10.3788/OPE.20132108.2146.
LIU Zhi-wen LIU Ding-sheng LIU Peng . SIFT feature matching algorithm of multi-source remote image[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2146-2153 DOI: 10.3788/OPE.20132108.2146.
针对多源遥感影像之间灰度值非线性变化导致特征点匹配率大幅度下降的问题,提出了一种利用光谱信息的多源遥感影像特征点匹配算法。首先,以光谱信息对遥感影像波段进行线性拟合,使待匹配影像与参考影像之间的灰度值由非线性转变为线性或者近似线性变化。接着,在拟合的遥感影像上采用改进的尺度不变特征变换(SIFT)算法进行匹配。最后,采用随机抽样一致性算法剔除误匹配点对。与常用特征点检测算法(SIFT
梯度位置朝向直方图(GLOH)
RS-SIFT)的对比实验结果表明,本文所用的ETM+影像全色与多光谱影像的特征点匹配率提高了4%左右,CBERS-02B和HJ-1B卫星多光谱影像的正确特征点匹配个数增加了8对。因此,在多源遥感影像特征点匹配中,本文所提算法优于其它检测算法,可以极大地改善匹配效果。
Many traditional feature point algorithms cannot handle more complex nonlinear brightness changes because the gray between multi-source remote sensing images is nonlinear changes. To cover the shortage
a Scale Invariant Feature Transform(SIFT) feature matching algorithm of multi-source remote sensing images was proposed. First
the approximate linear gray value between multi-source remote sensing images was achieved through linear fitting of the bands of the images. Then
an improved SIFT algorithm was adopted to match the fitted remote sensing images. Finally
the random sample Consensus algorithm was used to remove the false matching point pairs. In comparison with other feature matching algorithms (SIFT
Gradient Location Orientation Hologram(GLOH)
RS-SIFT). The experimental results show that the feature matching rate increases by about 4% between ETM+ panchromatic and multispectral images and the number of correct matches of key points increases by about 8 point pairs between CBERS-02B and HJ-1B images. It concludes that the proposed method significantly outperforms many state-of-the-art methods under multi-source remote sensing images.
LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004,60(2):91-110.[2]李英,李静宇,徐正平. 结合 Surf 与聚类分析方法实现运动目标的快速跟踪[J]. 液晶与显示, 2011,26(4):544-550.LI Y, LI J Y, XU ZH P. Moving target fast tracking using SURF and cluster analysis method [J]. Chinese Journal of Liquid Crystals and Displays, 2011,26(4):544-550.(in Chinese)[3]丘文涛,赵建,刘杰. 结合区域分割的SIFT图像匹配方法[J]. 液晶与显示, 2012,27(6):827-831.QIU W T, ZHAO J, LIU J. Image matching algorithm combining SIFT with region segmentation [J]. Chinese Journal of Liquid Crystals and Displays, 2012,27(6):827-831.(in Chinese)[4]ZHOU H Y, YUAN Y, SHI CH M. Object tracking using SIFT features and mean shift [J]. Computer Vision and Image Understanding, 2009,113(3):345-352.[5]纪华, 吴元昊, 孙宏海, 等. 结合全局信息的SIFT特征匹配算法[J]. 光学 精密工程, 2009,17(2):439-444.JI H,WU Y H,SUN H H,et al.. SIFT feature matching algorithm with global information [J]. Opt. Precision Eng., 2009,17(2):439-444.(in Chinese)[6]ZHAO Z S,TIAN Q J,WANG J Z, et al.. Image match using distribution of colorful SIFT [C]. 2010 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), 2010:150-153.[7]YI Z,ZHIGUO C,YANG X. Multi-spectral remote image registration based on SIFT [J]. Electronics Letters, 2008,44(2):107-108.[8]TEKE M, TEMIZEL A. Multi-spectral satellite image registration using scale-restricted SURF [C]. 20th International Conference on Pattern Recognition(ICPR),2010:2310-2313.[9]CHEN J,TIAN J. Real-time multi-modal rigid registration based on a novel symmetric-SIFT descriptor[J]. Progress in Natural Science, 2009,19(5):643-651.[10]VURAL M F,YARDIMCI Y, TEMIZEL A. Registration of multispectral satellite images with orientation-restricted SIFT [C].IEEE International Conference on Science and Remote Sensing Symposium,2009:III-243-III-246.[11]TANG F,LIM S H,CHANG N L. An improved local feature descriptor via soft binning [C]. 17th IEEE International Conference on Image Processing (ICIP),2010: 861-864.[12]TANG F,LIM S H,CHANG N L, et al.. A novel feature descriptor invariant to complex brightness changes [C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2009: 2631-2638.[13]BOGGIONE G,PIRES E,SANTOS P, et al.. Simulation of a Panchromatic band by spectral combination of multispectral ETM+ bands [C]. in Proc. ISRSE,Honolulu,2003.[14]ZENG Z. A new method of data transformation for satellite images:Ⅰ. Methodology and transformation equations for Tm images[J]. International Journal of Remote Sensing, 2007,28(18):4095-4124.[15]ZENG Z. A new method of data transformation for satellite images:Ⅱ. transformation equations for spot, noaa, ikonos, quick bird, aster, mss and other images and application[J]. International Journal of Remote Sensing, 2007,28(18):4125-4155.[16]FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981,24(6):381-395.
0
浏览量
73
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构