浏览全部资源
扫码关注微信
中国科学院 安徽光学精密机械研究所,安徽 合肥,230031
收稿日期:2013-02-01,
修回日期:2013-03-26,
网络出版日期:2013-08-20,
纸质出版日期:2013-08-15
移动端阅览
刘勇 钱鸿鹄 朱灵 赵树弥 张龙. 微流控实时荧光PCR成像非均匀性的校正[J]. 光学精密工程, 2013,21(8): 2161-2168
LIU Yong QIAN Hong-hu ZHU Ling ZHAO Shu-mi ZHANG Long. Nonuniformity Correction for Fluorescence Imaging of Microfluidic Real-time PCR[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2161-2168
刘勇 钱鸿鹄 朱灵 赵树弥 张龙. 微流控实时荧光PCR成像非均匀性的校正[J]. 光学精密工程, 2013,21(8): 2161-2168 DOI: 10.3788/OPE.20132108.2161.
LIU Yong QIAN Hong-hu ZHU Ling ZHAO Shu-mi ZHANG Long. Nonuniformity Correction for Fluorescence Imaging of Microfluidic Real-time PCR[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2161-2168 DOI: 10.3788/OPE.20132108.2161.
综合参考标样法和定标校正法的思想
提出了一种用于校正微流控实时荧光聚合酶链式反应(PCR)系统荧光成像非均匀性的"多目标像素区域定标线性校正"算法,以提高其检测结果的准确性。以与PCR荧光标记物SYBR Green光谱特性相似的荧光素钠溶液为样本,检测了11种不同浓度的均匀荧光素钠溶液受激发射荧光信号的强度,分析了各个目标像素区域荧光强度和荧光素钠溶液浓度之间的线性响应关系,采用两点定标校正方法计算了CCD各个目标像素区域的校正系数矩阵。实验表明,3种浓度荧光素钠溶液的成像均匀度分别从校正前的71.28%、72.01%、70.73%提高到校正后的77.49%、80.07%、90.64%;微流控四腔芯片中相同浓度的DNA样品在PCR扩增阶段的Ct值相对标准偏差由校正前的4.38%、1.94%、3.31%减小到校正后的2.44%、0.79%、1.31%,显著提高了微流控实时荧光PCR检测结果的准确性。
In combination of reference standard sampling and calibration methods
a multi-target area calibration linear correction algorithm was proposed to correct the nonuniformity of fluorescence detection of microfluidic Polymerase Chain Reac Polymerase Chain Reaction(PCR) system and to improve the performance of the system. The fluorescein sodium solution with similar spectral characteristics to PCR fluorescence marker SYBR Green was used as the test sample
and the emission fluorescence intensities of eleven uniformity sodium fluorescein solutions with different concentrations were measured. The linear relationship between fluorescence intensities and fluorescein sodium concentrations was analyzed and the correction coefficient matrix in each imaging target area on a CCD was calculated by a two-point linear correction algorithm. The results after correction show that the imaging uniformity in three different concentrations of sodium fluorescein solutions are improved respectively from 71.28%
72.01%
70.73% to 77.49%
80.07%
90.64%. The relative standard deviations of Ct value for the same concentration DNA template were reduced respectively from 4.38%
1.94%
3.31% to 2.44%
0.79%
1.31%. These results indicate that the proposed nonuniformity correction algorithm significantly improves the accuracy of microfluidic real-time PCR.
方肇伦. 微流控分析芯片的制作及应用[M]. 北京:化学工业出版社,2005. FANG ZH L. The Production and Application of Microfluidic Chip [M]. Beijing: Chemical Industry Press, 2005. (in Chinese)[2]李钢. 基于微流控芯片激光诱导荧光检测系统的研究与应用[D]. 上海:华东师范大学,2010.LI G. Research and application of laser-induced fluorescence detection system based on microfluidic chip [D]. Shanghai: East China Normal University,2010. (in Chinese)[3]ZHANG CH S, XU J L, MA W L, et al.. PCR microfluidic devices for DNA amplification [J]. Biotechnology Advances,2006,24(3):243-284.[4]HEID C A, STEVENS J, LIVAK K J, et al.. Real time quantitative PCR [J]. Genome Research, 1996, 6(10): 986-994. [5]AHMAD F, SEYRIG G, TOURLOUSSE D M, et al.. A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips [J]. Biomed Microdevices, 2011, 13(5): 929-937.[6]LI Y Y, ZHANG CH S, XING D. Integrated microfluidic reverse transcription-polymerase chain reaction for rapid detection of food- or waterborne pathogenic rotavirus [J]. Anal. Biochem, 2011, 415(2): 87-96.[7]PIERIK A, BOAMFA M, ZELST M V, et al.. Real time quantitative amplification detection on a microarray: towards high multiplex quantitative PCR [J]. Lab Chip, 2012, 12(10): 1897-1902.[8]许金钩,王本尊. 荧光分析法[M]. 第三版. 北京:科学出版社,2007.XU J G, WANG B Z. The Fluorescence Analysis Method [M]. 3rd ed.Beijing: Science Press, 2007. (in Chinese)[9]BUSTIN S A, BENES V, GARSON J A, et al.. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments [J]. Clin Chem, 2009, 55(4): 611-622.[10]WANG Y. Universal reference dye for quantitative amplification US:US,2012/0164690 A1[P].2012-01-28.[11]CHRISTIAN V T. Methods for increasing multiplex level by externalization of passive reference in polymerase chain reactions:WO,WO 2011/097424 A1[P].2011-08-11.[12]朱宏殷,郭永飞,司国良. 多TDICCD拼接相机成像非均匀性实时校正的硬件实现 [J]. 光学 精密工程, 2011, 19(12): 3034-3042.ZHU H Y, GUO Y F, SI G L. Real-time correction of imaging nonuniformity for multi-TDICCD mosaic camera on hardware [J]. Opt. Precision Eng., 2011, 19(12): 3034-3042. (in Chinese)[13]岳俊华,李岩,武学颖,等. 多TDI-CCD拼接相机成像非均匀性的校正 [J]. 光学 精密工程, 2009, 17(12): 3084-3088.YUE J H, LI Y, WU X Y, et al.. Correction of imaging nonuniformity for multi-TDICCD mosaic camera [J]. Opt. Precision Eng., 2009, 17(12): 3084-3088. (in Chinese)[14]王文华,何斌,韩双丽,等. 星上CCD成像非均匀性的实时校正 [J]. 光学 精密工程, 2010, 18(6): 1420-1428.WANG W H, HE B, HAN SH L, et al.. Real-time correction of nonuniformity in CCD imaging for remote sensing [J]. Opt. Precision Eng., 2010, 18(6): 1420-1428.(in Chinese)[15]魏伟一. 非均匀光照图像的灰度校正与分割技术研究 [D]. 兰州:兰州理工大学,2011.WEI W Y. Research on gray correction and segmentation technology for un-uniform illumination image [D]. Gansu: Lanzhou University of Technology, 2011. (in Chinese)[16]FUWA K, VALLE B L. The physical basis of analytical atomic absorption spectrometry. The pertinence of the beer-lambert law [J]. Analytical Chemistry, 1963, 35(8): 942-946.[17]刘亚侠. TDI CCD 遥感相机标定技术的研究 [D]. 长春:中国科学院长春光学精密机械与物理研究所, 2005.LIU Y X. Research on the Calibration Technique of the TDI CCD remote sensing Camera [D]. Changchun: Changchun Institute of Optics, Fine mechanics and Physics, Chinese Academy of Sciences, 2005. (in Chinese)[18]LIKAR B, MAINTZ J B, VIERGEVER M A, et al.. Retrospective shading correction based on entropy minimization [J]. J Microsc, 2000, 197(3): 285-295.[19]JIANG Y D, YU J SH, WANG ZH F. Design for the correction system of the real time non-uniformity of large area-array CCD image [C]. 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Xiamen, P.R. China: Proc. of SPIE, 2012: 84191R-84191R-6.[20]JIANG Y D, KIPPELEN B, YU J SH. A study of two-point multi-section non-uniformity correction auto division algorithm for infrared images [C]. 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Dalian, P.R. China: Proc. of SPIE, 2010: 76583X-76583X-7.[21]LIN X D, NAMBA Y, XING T W. Non-uniformity correction algorithm for decomposing the non-uniformity character of infrared FPA [C]. 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies, Xiamen, P.R. China: Proc. of SPIE, 2012: 842013-842013-11.[22]ZHU L, LI L, AN D, et al.. An integrated microfluidic real-time PCR system for pathogen detection [C]. Technical Proceedings of the 2012 NSTI Nanotechnology Conference and Expo, California, U.S.A: NSTI-Nanotech, 2012:52-55.[23]MORENO I. Illumination uniformity assessment based on human vision [J]. Optics letters, 2010, 35(23): 4030-4032.[24]ZHENG ZH R, HAO X, LIU X. Freeform surface lens for LED uniform illumination [J]. Appl Opt, 2009, 48(35): 6627-6634.
0
浏览量
22
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构