浏览全部资源
扫码关注微信
1. 浙江中医药大学 信息技术学院,浙江 杭州,310053
2. 东华大学 信息科学与技术学院 上海,201620
收稿日期:2013-01-17,
修回日期:2013-03-26,
网络出版日期:2013-08-20,
纸质出版日期:2013-08-15
移动端阅览
赖小波 刘华山 方纯洁. 融合特征相互关系的视网膜微动脉瘤提取[J]. 光学精密工程, 2013,21(8): 2187-2194
LAI Xiao-bo LIU Hua-shan FANG Chun-jie. Retinal microaneurysms extraction by fusing relationship among features[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2187-2194
赖小波 刘华山 方纯洁. 融合特征相互关系的视网膜微动脉瘤提取[J]. 光学精密工程, 2013,21(8): 2187-2194 DOI: 10.3788/OPE.20132108.2187.
LAI Xiao-bo LIU Hua-shan FANG Chun-jie. Retinal microaneurysms extraction by fusing relationship among features[J]. Editorial Office of Optics and Precision Engineering, 2013,21(8): 2187-2194 DOI: 10.3788/OPE.20132108.2187.
为了抑制视网膜不同结构特征之间的影响,提高视网膜微动脉瘤的检测精度,提出了一种基于特征相互关系的视网膜微动脉瘤提取算法。首先,对视网膜灰度图像进行均值滤波,检测圆形边界和视盘,并构建视盘掩模。然后,对视网膜绿色分量图像自适应直方图均衡化,利用Canny方法提取边缘,移除图像圆形边界并填充封闭的小面积对象。最后,考虑不同特征之间的相互关系,消除较大面积对象后进行"逻辑与"运算移除视网膜渗出物、血管和视盘,得到视网膜微动脉瘤图像。实验结果表明:该算法能够有效提取视网膜眼底图像中的微动脉瘤,其敏感度、特异性、阳性预测值和检测精度分别达到了94.81%、96.04%、91.64 %和95.66%,基本能够满足临床应用对稳定性和精度的要求。
To suppress the mutual affects among different structure features of retinal and improve the detection precision of retinal microaneurysms
a microaneurysm extraction algorithm by fusing relationship among features was proposed. Firstly
the mean filter was applied to a retinal grayscale image
both the circular border and optic disc were detected
and the optic disc mask was created. Then
the green component of the retinal image was equalized with an adaptive histogram and Canny method was used to extract the edges before removing the image circular border and to fill the enclosed small area objects. Finally
with consideration of the relationship among different features
larger area objects were removed and an AND logic was used to remove the retinal exudates
blood vessels as well as optic disc to obtain the retinal microaneurysm image. Experimental results indicate that the proposed method can effectively extract the microaneurysms in the retinal fundus image
and their sensitivity
specificity
positive predictive value and accuracy are 94.81%
96.04%
91.64 % and 95.66%
respectively. It can satisfy the clinical application requirements for strong stabilization and higher precision.
MULLINS J.China registers success with TB-diabetes screening initiative[J]. Lancet, 2012, 380(9842): 635-636.[2]ASKEW D A, CROSSLAND L, WARE R S, et al.. Diabetic retinopathy screening and monitoring of early stage disease in general practice: design and methods [J]. Contemporary clinical trials, 2012, 33(5): 969-975.[3]SJOLIE A K, KLEIN R, PORTA M, et al.. Rtinal microaneurysm count predicts progression and regression of diabetic retinopathy[J]. Diabetic Medicine, 2011, 28(3): 345-351.[4]KANDE G B, SAVITHRI T S, SUBBAIAH P V. Automatic detection of microaneurysms and hemorrhages in digital fundus images[J]. Journal of Digital Imaging, 2010, 23(4): 430-437.[5]WALTER T, MASSIN P, ERGINAY A, et al.. Automatic detection of microaneurysms in color fundus images [J]. Medical Image Analysis, 2007, 11(6): 555-566.[6]AKRAM M U, KHALID S, KHAN S A. Identification and classification of microaneurysms for early detection of diabetic retinopathy [J]. Pattern Recognition, 2013, 46(1): 107-116.[7]JIMENEZ S, ALEMANY P, NUNEZ F J, et al.. Automated detection of microaneurysms by using region growing and fuzzy artmap neural network[J]. Archivos de la Sociedad Espanola de Oftalmologia, 2012, 87(9): 284-289.[8]SHAEIDI A. An algorithm for identification of retinal microaneurysms[J]. Journal of the Serbian Society for Computational Mechanics, 2010, 4(1): 43-51.[9]ZHANG B, KARRAY F, LI Q, et al.. Sparse representation classifier for microaneurysm detection and retinal blood vessel extraction [J]. Information Sciences, 2012, 200: 78-90.[10]ANTAL B, HAJDU A. An ensemble-based system for microaneurysm detection and diabetic retinopathy grading [J]. IEEE Transactions on Biomedical Engineering, 2012, 59(6): 1720-1726.[11]AKRAM M U, KHAN A, IQBAL K, et al.. Retinal images: optic disk localization and detection [C]. International Conference on Image Analysis and Recognition, 2010, 6112: 40-49.[12]YAZID H, AROF H, ISA H M. Exudates segmentation using inverse surface adaptive thresholding [J]. Measurement, 2012, 45(6): 1599-1608.[13]NIEMEIJER M, GINNEKEN B V, CREE M, et al.. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs [J]. IEEE Transactions on Medical Imaging, 2010, 1(29): 185-195.[14]FLEMING A D, PHILIP S, GOATMAN K A, et al.. Automated microaneurysms detection using local contrast normalization and local vessel detection[J]. IEEE Transactions on Medical Imaging, 2006, 25(9): 1223-1232.[15]QUELLEC G, LAMARD M, JOSSELIN P M, et al.. Optimal wavelet transform for the detection of microaneurysms in retina photographs[J]. IEEE Transactions on Medical Imaging, 2008, 27(9): 1230-1241.[16]RAM K, JOSHI G D, SIVASWAMY J.A successive clutter-rejection-based approach for early detection of diabetic retinopathy [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(3): 664-673.[17]QUELLEC G, RUSSELL S R, MICHAEL D, et al.. Optimal filter framework for automated, instantaneous detection of lesions in retinal images[J]. IEEE Transactions on Biomedical Engineering, 2011, 30(2): 523-533.
0
浏览量
102
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构