浏览全部资源
扫码关注微信
1. 中国科学院 上海微系统与信息技术研究所 传感技术国家重点实验室微系统技术重点实验室,上海 200050
2. 中国科学院大学,微系统与信息技术学院,上海 200050
收稿日期:2013-02-01,
修回日期:2013-04-26,
网络出版日期:2013-09-30,
纸质出版日期:2013-09-15
移动端阅览
龙亮 钟少龙 徐静 吴亚明. 微型光纤磁传感器的设计与制作[J]. 光学精密工程, 2013,21(9): 2294-2302
LONG Liang ZHONG Shao-long XU Jing WU Ya-ming. Design and fabrication of micro fiber-optic magnetic sensor[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2294-2302
龙亮 钟少龙 徐静 吴亚明. 微型光纤磁传感器的设计与制作[J]. 光学精密工程, 2013,21(9): 2294-2302 DOI: 10.3788/OPE.20132109.2294.
LONG Liang ZHONG Shao-long XU Jing WU Ya-ming. Design and fabrication of micro fiber-optic magnetic sensor[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2294-2302 DOI: 10.3788/OPE.20132109.2294.
提出了一种基于微机电系统(MEMS)扭镜结构的光纤磁场传感器,并利用对角度变化非常敏感的双光纤准直器对扭镜的扭转角度进行了检测。该MEMS光纤磁传感器由MEMS扭镜结构、磁性敏感薄膜和双光纤准直器组成。文中分析了器件的磁敏感原理和光纤检测原理,介绍了器件综合设计方法,并给出了器件的结构参数。利用MEMS加工技术成功制作出了MEMS光纤磁传感器样品,最终得到的磁传感器的尺寸为3.7 mm2.7 mm0.5 mm。对磁传感器进行了实验测试,得到的输出实验值与理论值吻合。测试结果表明,该磁传感器的光纤检测灵敏度可达到0.65 dB/mT,最小可分辨磁场可达167 nT。将MEMS敏感结构与光纤检测相结合,该传感器兼备了两者的优点,结构紧凑、制作工艺简单、工作时无需电流激励。
A Micro-electro-mechanical System(MEMS) fiber-optic magnetic sensor based on a MEMS torsional mirror was proposed and a dual-fiber collimator was used for measuring the tiny angle of torsional mirror. The MEMS fiber-optic magnetic senor is consists of a MEMS torsional mirror
a magnetic film and a dual fiber collimator. The mechanisms of magnetic sensing and optical detection of the device were described
and the design and optimization of the device were discussed. A prototype for the MEMS magnetic sensor with a volume of 3.7 mm2.7 mm0.5 mm was fabricated successfully by MEMS technologies. The measured output values of the magnetic sensor are consistent with theoretical values. Experimental results indicate that the sensitivity of the magnetic sensor is 0.65 dB/mT. and its minimum resolution magnetic field is 167 nT. The MEMS fiber-optic magnetic sensor combines fiber-optic measurement and compact MEMS structure
and it has advantages of compact construct and simple fabrication processes. Moreover
it can operate without current excitation.
GUILLERMO V Q, MANUEL R L, ALFONSO C R, et al.. Design of a low-consumption fluxgate transducer for high-current measurement applications [J]. IEEE Sensor Journal,2011,11(2):280-287.[2]郑小林,李金,侯文生,等. 应用磁传感器阵列定位跟踪消化道诊疗胶囊[J]. 光学 精密工程,2009,17(3):576-582. ZENG X L, LI J, HOU W SH, et al.. Localizing and tracking of medical capsule in human by magnetic sensor array [J]. Opt. Precision Eng., 2009,17(3):576-582. (in Chinese)[3]VYHNANEK J, JANOSEK M, RIPKA P. AMR gradiometer for mine detection [J]. Sensors and Actuators A, 2012,186:100-104.[4]RIPKA P. Advances in fluxgate sensors [J]. Sensors and Actuators A, 2003, 106:8-14.[5]HAUSER H,HOCHREITER J, STANGL G, et al.. Anisotropic magnetoresistance effect field sensors [J].Journal of Magnetism and Magnetic Materials, 2000, 215-216:788-791.[6]PAUN M Al, SALLESE J M, KAYAL M. Offset and drift analysis of the hall effect sensor. The geometrical parameters influence [J]. Digest Journal of Nanomaterials and Biostructures, 2012, 7(3): 883-891.[7]LI M, ROUF V T, THOMPSON M J, et al.. Three-axis lorentz-force magnetic sensor for electronic compass applications [J]. Journal of Microelectromechanical Systems, 2012, 21(4): 1002-1010.[8]TAPIA J A, HERRERA-MAY A L, GARCIA-RAMIREZ P J, et al.. Sensing magnetic flux density of artificial neurons with a MEMS device [J]. Biomedical Microdevices, 2011, 13(2): 303-313.[9]CHEN J, QIN M, HUANG Q A. Detecting magnetic field direction by a micro beam operating in different vibration modes [J]. Chinese Physics B, 2011,20(9): 097101-1-9.[10]DU G T, CHEN X D. MEMS magnetometer based on magnetorheological elastomer [J]. Measurement,2012, 45(1): 54-58.[11]DILELLA D, WHITMAN L J, COLTON R J, et al.. A micromachined magnetic-field sensor based on an electron tunneling displacement transducer [J]. Sensors and Actuators A, 2000, 86(1-2):8-20.[12]VASQUEZ D J, JUDY J W. Optically-interrogated zero-power MEMS magnetometer [J]. Journal of Microelectromechanical Systems, 2007, 16(2):336-343.[13]张旭苹,高岑,王峰,等. 应力传感光缆的应力传递特性[J]. 光学 精密工程,2011, 19(12): 2891-2899.ZHANG X P, GAO C, WANG F, et al.. Stress transfer performance of strain sensing cable [J]. Opt. Precision Eng., 2011, 19(12): 2891-2899. (in Chinese)[14]林巧,陈柳华,李书,等. 基于光纤-镜面干涉腔的光纤加速度计[J].光学 精密工程,2011,19(6):1179-1184.LIN Q, CHEN L H, LI S, et al.. Fiber optic accelerometer based on fiber-mirror interference cavity [J]. Opt. Precision Eng., 2011, 19(6): 1179-1184. (in Chinese)[15]王宏亮,宋娟,冯德全,等.应用于特殊环境的光纤光栅温度压力传感器[J]. 光学 精密工程,2011,19(3):545-551.WANG H L, SONG J, FENG D Q, et al.. High temperature-pressure FBG sensor applied to special environments [J]. Opt. Precision Eng., 2011, 19(3): 545-551. (in Chinese)[16]胡友秋,程福臻,刘之景.电磁学[M].北京:高等教育出版社,1994.HU Q Y, CHENG F ZH, LIU ZH J. Electromagnetics [M]. Beijing:High Education Press, 1994. (in Chinese)[17]BAO M H. Analysis and Design Principles of MEMS Devices [M]. Elsevier, 2005.[18]GILSDORF R W, PALAIS J C. Single-mode fiber coupling efficiency with graded-index rod lenses [J]. Applied Optics, 1994, 33(16):3440-3445.[19]YUAN S F, RIZA N A. General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses [J]. Applied Optics, 1999, 38(15):3214-3222.[20]NIARCHOS D. Magnetic MEMS: key issues and some applications [J]. Sensors and Actuators A, 2003, 109:166-173.
0
浏览量
256
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构