浏览全部资源
扫码关注微信
1. .中国科学院 长春光学精密机械与物理研究所 小卫星技术国家地方联合工程研究中心,吉林 长春,130033
2. 中国科学院大学 北京,100039
收稿日期:2012-05-25,
修回日期:2012-07-14,
网络出版日期:2013-09-30,
纸质出版日期:2013-09-15
移动端阅览
李宗轩 张雷 姚劲松 解鹏 金光 孔林. Cartwheel型双轴柔性铰链设计[J]. 光学精密工程, 2013,21(9): 2317-2325
LI Zong-xuan ZHANG Lei YAO Jin-song XIE Peng JIN Guang KONG Lin. Design of Cartwheel bi-axial flexural hinge[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2317-2325
李宗轩 张雷 姚劲松 解鹏 金光 孔林. Cartwheel型双轴柔性铰链设计[J]. 光学精密工程, 2013,21(9): 2317-2325 DOI: 10.3788/OPE.20132109.2317.
LI Zong-xuan ZHANG Lei YAO Jin-song XIE Peng JIN Guang KONG Lin. Design of Cartwheel bi-axial flexural hinge[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2317-2325 DOI: 10.3788/OPE.20132109.2317.
针对精密光学仪器对光学元件柔性支撑的需求,提出了由带圆角的短直梁复合组成的Cartwheel型双轴柔性铰链,并利用无量纲设计图研究了设计方法。首先,基于对Cartwheel双轴柔性铰链的参数化有限元分析进行多项式拟合,建立了其刚度、应力等力学指标的无量纲设计图。针对光学仪器的工程需要,利用该无量纲设计图进行了实例设计,并利用有限元分析对其进行了实验验证。搭建了光学测试平台,对设计实例的转动刚度进行了测量。结果显示:有限元分析结果、实验测量数据与设计结果符合得较好,最大相对误差为10.1%。使用无量纲设计图方法作为设计工具,设计者可根据对带圆角短直梁复合组成的Cartwheel型双轴柔性铰链的刚度、转角行程、最大应力与结构重量等要求,确定其几何尺寸,从而方便、快速、准确地满足设计要求。
To realize the flexural support for optical elements in a precision optical instrument
a Cartwheel bi-axial flexural hinge composed by filleted short beams was proposed. The dimensionless design graph method for the design of the spatial flexural hinge was presented. First
the parametric finite element analysis on the Cartwheel bi-axial flexural hinge was performed
and then a polynomial fitting was carried out according to the analysis results to establish the dimensionless design graph for the mechanical characteristics of the flexural hinge
such as rotational stiffness and maximum stress. A practical design by the dimensionless graph method was performed to satisfy the supporting demand of an optical instrument
and the finite element analysis was used to verify it also. Finally
an optical test platform was established
and the rotational stiffness of the design was measured. Obtained results show that the maximum relative error of the rotational stiffness between analysis result
test result and design result is 10.1%. In conclusion
by using the dimensionless design graph as a design tool
a designer can determine the optimal geometry rapidly and correctly of the Cartwheel bi-axial flexural hinge based upon its demands for the stiffness
rotation angle
maximum stress and the weight. This paper can provide reference for the application of the Cartwheel bi-axial flexural hinge in precision optical instruments.
HOWELL L L. Compliant Mechanisms [M]. New York:Wiley, 2001.[2]SMITH S T. Flexures: Elements of Elastic Mechanisms [M]. New York:Gordon and Breach Science Publishers, 2000. [3]CHOI K B, LEE J J, KIM M Y. Cartwheel flexure-based compliant stage for large displacement driven by a stack-type piezoelectric element [C]. International Conference on Control, Automation and Systems, Seoul, 2007:2754-2758.[4]鲁亚飞,范大鹏,范世珣,等. 快速反射镜两轴柔性支承设计[J]. 光学 精密工程,2010,18(12):2574-2582.LU Y F, FAN D P, FAN SH X, et al.. Design of two axis elastic support for fast steering mirror [J]. Opt. Precision Eng., 2010, 18(12): 2574-2582. (in Chinese)[5]辛宏伟,关英俊,李景林,等. 大孔径长条反射镜支撑结构的设计[J]. 光学 精密工程,2011,19(7):1560-1568.XIN H W, GUAN Y J, LI J L, et al.. Design of support for large aperture rectangular mirror [J]. Opt. Precision Eng., 2011, 19(7): 1560-1568. (in Chinese)[6]NICOLAE L. Compliant Mechanisms: Design of Flexure Hinges [M]. CRC Press, 2002. [7]RIJNVELD N, PIJNENBURG J A C M. Picometer stable scan mechanism for gravitational wave detection in space [J]. SPIE, 2010, 7734: 77341R-1-12.[8]李琳,杨勇. 空间曲线切口式柔性铰的设计[J]. 光学 精密工程,2010,18(10):2192-2198.LI L, YANG Y. Design of flexure hinges with space curve notches [J]. Opt. Precision Eng., 2010, 18(10): 2192-2198 . (in Chinese) [9]SCHOTBORGH W O, KOKKELER F G M, HANS T, et al.. Dimensionless design graphs for flexure elements and a comparison between three flexure elements [J]. Precision Engineering, 2005, 29: 41-47.[10]BI SH SH, ZHAO H ZH, YU J J. Modeling of a cartwheel flexural pivot [J]. Journal of Mechanical Design, 2009, 131: 061010-1-9.[11]PEI X, YU J J, ZONG G H, et al.. The modeling of cartwheel flexural hinges [J]. Mechanism and Machine Theory, 2009, 44: 1900-1909.[12]刘鸿文. 材料力学[M]. 北京:高等教育出版社,2004.LIU H W. Mechanics of Materials [M]. Beijing: Higher Education Press, 2004. (in Chinese)[13]TIAN Y, SHIRINZADEH B, ZHANG D, et al.. Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis [J]. Precision Engineering, 2010, 34: 92-100.[14]BI SH SH, ZHAO SH SH, SUN M L, et al.. Novel annulus-shaped flexure pivot in rotation application and dimensionless design [J]. Chinese Journal of Mechanical Engineering, 2009, 22(6): 800-809.
0
浏览量
140
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构