浏览全部资源
扫码关注微信
1. 清华大学 计算机科学与技术系,北京 100084
2. 北京安贞医院 心内科,北京 100029
收稿日期:2013-03-04,
修回日期:2013-04-25,
网络出版日期:2013-09-30,
纸质出版日期:2013-09-15
移动端阅览
舒鹏 孙延奎 宋现涛. 由冠脉光学相干层析图像自动提取血管壁内轮廓[J]. 光学精密工程, 2013,21(9): 2381-2387
SHU Peng SUN Yan-kui SONG Xian-tao. Automatic detection of inner contour of vessel wall from intracoronary optical coherence tomographic image[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2381-2387
舒鹏 孙延奎 宋现涛. 由冠脉光学相干层析图像自动提取血管壁内轮廓[J]. 光学精密工程, 2013,21(9): 2381-2387 DOI: 10.3788/OPE.20132109.2381.
SHU Peng SUN Yan-kui SONG Xian-tao. Automatic detection of inner contour of vessel wall from intracoronary optical coherence tomographic image[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2381-2387 DOI: 10.3788/OPE.20132109.2381.
研究了冠脉光学相干层析(OCT)图像血管壁内轮廓的自动提取方法以提高算法的鲁棒性和计算效率。首先,利用冠脉OCT体数据中相邻图像之间的相关性去除鞘管信号对边缘提取的影响。接着,采用射线发射法估计血管中心,并以血管中心作为极点对去除鞘管信号的图像进行极坐标变换。然后,采用分块阈值滤波去除变换后图像的噪声并提取上边缘。最后,做逆极坐标变换得到血管壁的内轮廓。对400多幅测试图像的实验结果表明,该方法可以正确提取冠脉OCT图像的血管壁内轮廓,每幅图像的平均处理时间约为1.2 s。该方法不仅能够正确处理血管分叉或鞘管干扰大的图像,而且计算效率高,因此在鲁棒性和处理速度上具有优势。
An automatic extracting method for the image of inner contour of a vessel wall from intracoronary Optical Coherence Tomography (OCT) was investigated to improve the robustness and computing efficiency of traditional algorithms. Firstly
the correlation between OCT images in volume data was used to remove the effect of the signal caused by a catheter on the edge extraction. Then
the ray shooting method was taken to estimate the center of vessel
and the center was chosen as the pole to do a polar transform on the OCT image. Furthermore
the transformed image was partitioned into several parts
these parts were denoised separately by different thresholds and the upper edge was extracted from the denoised image. Finally
the inner contour of the vessel wall was obtained by an inverse polar transform. Experimental results on more than 400 images indicate that the inner contours of vessel walls of intracoronary OCT images can be detected accurately
and the average processing time for each image is about 1.2 s.In conclusion
the method can deal with OCT images with vascular bifurcation and ones influenced by catheter largely at higher speeds
so it has advantages in robustness and computational efficiency.
王志斌,史国华,何益,等. 光学相干层析技术在光学表面间距测量中的应用[J]. 光学 精密工程, 2012, 20(7): 1469-1474.WANG Z B, SHI G H, HE Y, et al.. Application of optical coherence tomography to distance measurement of optical surface[J]. Opt. Precision Eng., 2012, 20(7): 1469-1474. (in Chinese)[2]张芹芹,吴晓静,朱思伟,等. 谱域光学相干层析成像量化技术及其在生物组织定量分析中的应用[J]. 光学 精密工程, 2012, 20(6): 1188-1193.ZHANG Q Q, WU X J, ZHU S W, et al.. Quantitative spectral domain optical coherence tomography and its application to quantitative analysis of biological tissues [J]. Opt. Precision Eng., 2012, 20(6): 1188-1193. (in Chinese)[3]彭诚,张芹芹,吴晓静,等. 谱域OCT成像系统在口腔组织检测中的应用[J]. 光学 精密工程, 2011, 19(8): 1931-1936.PENG C, WU Q Q, WU X J, et al.. Application of spectral domain optical coherence tomography to oral cavity tissue test [J]. Opt. Precision Eng., 2011, 19(8): 1931-1936. (in Chinese)[4]ZYSK M, NGUYEN F T, OLDENBURG A L, et al.. Optical coherence tomography: a review of clinical development from bench to bedside [J]. Journal of Biomedical Optics, 2007, 12(5): 051403-1-21.[5]MELISSA J S, GUILLERMO J T, WANG Y O, et al.. Progress in intracoronary optical coherence tomography [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 12(4): 706-714.[6]KUME T, AKASAKA T, KAWAMOTO T, et al.. Assessment of coronary intima-media thickness by optical coherence tomography: Comparison with intravascular ultrasound [J]. Circulation Journal, 2005, 69(8): 903-907.[7]BONNEMA G T, CARDINAL K O, MCNALLY J B, et al.. Assessment of blood vessel mimics with optical coherence tomography [J]. J. Biomed. Opt, 2007, 12(2): 024018.[8]TANIMOTO S, GRANILLO G R, BARLIS P. A novel approach for quantitative analysis of intracoronary optical coherence tomography: High inter-observer agreement with computer assisted contour detection [J]. Catheter Cardiovasc. Interv, 2008, 72(2): 228-235.[9]CANNY J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698.[10]KENJI S, CHARL B, FRITS P, et al.. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography: Method and validation [J]. Catheterization and Cardiovascular Interventions, 2009, 74(7):1058-1065.[11]TUNG K P, SHI W Z, SILVA R D, et al.. Automatical vessel wall detection in intravascular coronary OCT [C]. Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, United states: ISBI'11, 2011:610-613.[12]TSANTIS S, KAGADIS G C, KATSANOS K, et al.. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography [J]. Med Phys, 2012, 39(1): 503-513.[13]SERHAN G, GOZDE G I, STPHANE C, et al.. A new 3-D automated computational method to evaluate in stent neointimal hyperplasia in in-vivo intravascular optical coherence tomography pullbacks [C]. Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, London, United kingdom: MICCAI2009 , Lecture Notes in Computer Science, 2009, 12(2): 776-785.[14]KAUFFMANN C, MOTREFF P, SARRY L. In vivo supervised analysis of stent reendothelialization from optical coherence tomography [J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 807-818.[15]GONZALEZ R C, WOODS R E. Digital Image Processing [M]. Prentice Hall, New Jersey, 2002.[16]OSTU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.[17]HARALICK R M, STERNBERG S R, ZHUANG X H. Image analysis using mathematical morphology [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(4): 532-550.[18]KROON D J. Implementation of active contour in Matlab [OL]. Available at: http://www.mathworks.com/matlabcentral/fileexchange/28149.
0
浏览量
206
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构