浏览全部资源
扫码关注微信
装备学院 重点实验室,北京 101416
收稿日期:2013-03-01,
修回日期:2013-04-24,
网络出版日期:2013-09-30,
纸质出版日期:2013-09-15
移动端阅览
翟优 曾峦 熊伟. 不同局部邻域划分SURF描述符的性能分析[J]. 光学精密工程, 2013,21(9): 2395-2404
ZHAI You ZENG Luan XIONG Wei. Performance analysis of SURF descriptor with different local region partition[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2395-2404
翟优 曾峦 熊伟. 不同局部邻域划分SURF描述符的性能分析[J]. 光学精密工程, 2013,21(9): 2395-2404 DOI: 10.3788/OPE.20132109.2395.
ZHAI You ZENG Luan XIONG Wei. Performance analysis of SURF descriptor with different local region partition[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2395-2404 DOI: 10.3788/OPE.20132109.2395.
研究了加速鲁棒特征(SURF)描述符的局部邻域划分方法,以降低该描述符的维数,提升基于SURF的图像匹配算法的匹配速度和鲁棒性。参考尺度不变特征变换(SIFT)描述符和SURF描述符已有的各种邻域划分方式,将SURF描述符的局部邻域分为栅格状(原SURF划分方式)、三角形和扇形进行分析。首先,分析了图像的尺度和旋转变化对这3种邻域划分方式描述符匹配性能的影响;然后,提出了构建三角形划分和扇形划分SURF描述符的方法;最后,进行了匹配实验,对8种不同划分方式的SURF描述符进行了比较。结果表明:扇形划分SURF描述符的性能要优于三角形划分和栅格划分SURF描述符,其中6扇区、8扇区、12扇区及三角形划分的SURF描述符的性能均比SURF描述符有一定程度的提升,描述符的维数与原SURF描述符(64维)相比分别低了40维、32维、16维和32维。
Several local region partition methods for Speeded Up Robust Features (SURF) descriptors were researched to reduce their dimensions and increase the matching speeds and robustnesses of SURF based matching algorithms. With reference to existing local region partition methods of Scale Invariant Feature Transform (SIFT) and SURF descriptors
the local regions were divided into grids(original SURF)
triangles
and sectors. First
the influences of scale change and rotation of the image on the matching performance of SURF descriptors were analyzed. Then
a method to construct the SURF descriptors with local region partitions in triangles and sectors were proposed
and matching experiments were performed. The SURF descriptors with different local region partitions were compared. The experiment results show that the performance of the sector partition based SURF descriptor is better than those of triangle partition and grid partition (original SURF) based SURF descriptors. The performance of SURF descriptors with 6-sector partition
8-sector partition
12-sector partition and triangle partition is better than that of original one
and the dimensions of these new descriptors are 40
32
16 and 32 lower than that of original SURF (64 dimensions).
翟优, 曾峦, 熊伟. 基于不变特征描述符实现星点匹配[J]. 光学 精密工程, 2012, 20(11): 2531-2539.ZHAI Y, ZENG L, XIONG W. Star matching based on invariant feature descriptor [J]. Opt. Precision Eng., 2012, 20(11): 2531-2539.(in Chinese)[2]李英, 丘文涛, 赵建,等.结合区域分割的SIFT图像匹配方法[J].液晶与显示,2012, 27(6):827-831.LI Y, QIU W T, ZHAO J, et al.. Image matching algorithm combining SIFT with region segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(6):827-831.(in Chinese)[3]李英,李静宇,徐正平. 结合SURF与聚类分析方法实现运动目标的快速跟踪[J]. 液晶与显示,2011, 26(4):544-550.LI Y,LI J Y,XU ZH P. Moving target fast tracking using SURF and cluster analysis method [J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(4):544-550. (in Chinese)[4]黄彬彬, 唐琎. 一种新的人脸图像中眼睛定位方法[J]. 液晶与显示, 2009, 24(2): 278-282.HUANG B B, TANG J. Novel method of eye detection in facial images [J]. Chinese Journal of Liquid Crystals and Displays, 2009, 24(2): 278-282. (in Chinese)[5]LOWE D G. Object recognition from local scale-invariant features [C].Proc. of the International Conference on Computer Vision, 1999: 11501157.[6]LOWE D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004:91-110. [7]KE Y,SUKTHANKAR R.PCA-SIFT:a more distinctive representation for local image descriptors [C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Washington D C,2004,2:506-513.[8]MIKOLAJCZYK K, SCHMID C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(10): 1615-1630.[9]ZENG L, ZHAI Y. An improved SIFT descriptor[C]. Proc. of SPIE, 2011,8321: 1-8.[10]曾峦,顾大龙. 一种基于扇形区域分割的SIFT特征描述符[J]. 自动化学报, 2012, 38(9): 1513-1519.ZENG L, GU D L. A SIFT feature descriptor based on sector area partitioning [J]. Acta Automatica Sinica, 2012, 38(9): 1513-1519.(in Chinese)[11]ZENG L, XIONG W, ZHAI Y. Gun bore flaw image matching based on improved sift descriptor[C]. Proceedings of the 8th International Symposium on Precision Engineering Measurements and Instrumentation, Chengdu, China, SPIE, 2012.[12]YAN C, HASLER N, THORMHLEN T, et al.. Scale invariant feature transform with irregular orientation histogram binning [C]. 6th International Conference on Image Analysis and Recognition (ICIAR 2009),2009: 258-267.[13]BAY H, TUYTELAARS T,GOOL L J V. Surf: Speeded uprobust features[C]. In A. Leonardis, H. Bischof, and A. Pinz, editors, ECCV (1), volume 3951 of Lecture Notes in Computer Science, pages 404-417. Springer, 2006.[14]BAY H, TUYTELAARS T, GOOL L V, et al.. Speeded up robust features [J]. Computer Vision-ECCV 2006 Lecture wotes in Computer Science, 2006, 3951:404-417.[15]AGRAWAL M, KONOLIGE K, BLAS M R. CenSurE: Center surround extremas for realtime feature detection and matching [C]. Computer Vision-ECCV 2008 Lecture Wotes in Computer Science, 2008, 5305:102-115.[16]EBRAHIMI M, WALTERIO W. SUSurE: speeded up surround extrema feature detector and descriptorfor realtime applications[C]. IEEE Conference on Computer Vision and Pattern Recognition,2009:9-14.[17]LUO J, GWUN O. A comparison of SIFT, PCA-SIFT, and SURF[J]. International Journal of Image Processing (IJIP), 2009, 3(4): 143-152.
0
浏览量
96
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构