浏览全部资源
扫码关注微信
1. 吉林大学 仪器科学与电气工程学院,吉林 长春,130026
2. 吉林大学 通信工程学院,吉林 长春 130012
收稿日期:2013-01-15,
修回日期:2013-03-22,
网络出版日期:2013-09-30,
纸质出版日期:2013-09-15
移动端阅览
张志成 林君 石要武 王勇. 用加权子空间拟合和量子粒子群算法联合估计多普勒频率和波达方向[J]. 光学精密工程, 2013,21(9): 2445-2451
ZHANG Zhi-cheng LIN Jun SHI Yao-wu WANG Yong. Joint estimation of Dopplers and DOAs by WSF-QPSO method[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2445-2451
张志成 林君 石要武 王勇. 用加权子空间拟合和量子粒子群算法联合估计多普勒频率和波达方向[J]. 光学精密工程, 2013,21(9): 2445-2451 DOI: 10.3788/OPE.20132109.2445.
ZHANG Zhi-cheng LIN Jun SHI Yao-wu WANG Yong. Joint estimation of Dopplers and DOAs by WSF-QPSO method[J]. Editorial Office of Optics and Precision Engineering, 2013,21(9): 2445-2451 DOI: 10.3788/OPE.20132109.2445.
为了高效、准确地估计多普勒频率和波达方向(DOA),提出了基于加权子空间拟合(WSF)算法和量子粒子群优化(QPSO)算法的WSF-QPSO联合谱估计方法。首先,利用状态空间模型构造包含多普勒频率和DOA信息的广义可观测矩阵;用WSF算法拟合联合谱函数,将参数估计问题转化为多维非线性函数优化问题。然后,利用QPSO算法优化联合谱函数,得到多普勒频率和DOA的估计值。实验结果表明:在信源参数比较接近的情况下,WSF-QPSO方法在信噪比为0 dB时对多普勒频率和DOA估计的均方根误差仅为0.007 5 rad和0.25。与其他方法相比,该方法具有估计精度高、控制参数少、鲁棒性好、参数自动配对等特点,在低信噪比和小样本条件下依然能够得到较满意的参数估计结果。
To estimate Doppler frequency and Direction-of-Arrival (DOA) accurately and efficiently
a joint spectrum estimation method based on Weighted Subspace Fitting (WSF) algorithm and Quantum-behaved Particle Swarm Optimization (QPSO) algorithm
namely WSF-QPSO
was presented. First
an extended observability matrix containing the information of Dopplers and DOAs was constructed by using a state-space model
and the joint spectrum function was fitted by using WSF algorithm. Then
the joint parameter estimation was converted to multidimensional nonlinear function optimization. Finally
the Dopplers and DOAs were estimated by optimizing the joint spectrum function using QPSO algorithm. Experimental results indicate that the Root Medium Square Errors (RMSEs) of Dopplers and DOAs estimated from the WSF-QPSO method are 0.007 5 rad and 0.25
respectively when SNR is 0 dB. The proposed method can get high resolution and robust parameter estimation with less control terms
and the parameters are paired automatically. In addition
the WSF-QPSO method can obtain acceptable estimation results even under the condition of low SNR or small snapshot number in comparison with the joint spectrum estimation methods based on subspace decomposition.
LEMMA A N, VAN DER VEEN A J, DEPRETTERE E F. Joint angle-frequency estimation using multi-resolution ESPRIT[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, USA: ICASSP, 1998: 1957-1960.[2]LEMMA A N, VAN DER VEEN A J, DEPRETTERE E F. Analysis of ESPRIT based joint angle-frequency estimation[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul,Turkey: ICASSP, 2000: 3053-3056.[3]LEMMA A N, VAN DER VEEN A J, DEPRETTERE E F. Analysis of joint angle-frequency estimation using ESPRIT [J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1264-1283.[4]LIU F L, WANG J K, DU R Y. Unitary-JAFE algorithm for joint angle-frequency estimation based on Frame-Newton method [J]. Signal Processing, 2010, 90(3): 809-820.[5]LIN J D, FANG W H, WANG Y Y, et al.. FSF MUSIC for Joint DOA and frequency estimation and its performance analysis [J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4529-4542.[6]王惠刚,刘强. 多普勒方位联合估计的蒙特卡洛算法[J]. 电子学报,2009, 37(9): 1965-1970.WANG H G, LIU Q. A Monte Carlo method for joint estimation of Dopplers and DOAs[J]. Acta Electronica Sinica, 2009, 37(9): 1965-1970. (in Chinese)[7]WANG H, KEY S. Maximum likelihood angle-Doppler estimator using importance sampling [J]. IEEE Transactions on Aerospace and Electronics Systems, 2010, 46(2): 610-622.[8]VIBERG M, OTTERSTEN B. Sensor array processing based on subspace fitting [J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1110-1121.[9]BOCCATO L, KRUMMENAUER R, ATTUX R, et al. Application of natural computing algorithms to maximum likelihood estimation of direction of arrival[J]. Signal Processing, 2012, 92(5): 1338-1352.[10]ZHANG Z, LIN J, SHI Y. Application of artificial bee colony algorithm to maximum likelihood DOA estimation [J]. Journal of Bionic Engineering, 2013, 10(1): 100-109.[11]许廷发,赵思宏,周生兵,等.DSP并行系统的并行粒子群优化目标跟踪[J]. 光学 精密工程,2009,17(9):2236-2240.XU T F, ZHAO S H, ZHOU SH B, et al.. Particle swarm optimizer tracking based on DSP parallel system [J]. Opt. Precision Eng., 2009, 17(9): 2236-2240. (in Chinese)[12]王勇,朱明.用群体智能理论处理联合变换相关器输入图像[J]. 光学 精密工程,2010,18(4):958-964.WANG Y, ZHU M. Preprocessing input plane image of joint transform correlator based on swarm intelligence method[J]. Opt. Precision Eng., 2010, 18(4): 958-964. (in Chinese)[13]罗钧,王强,付丽.改进蜂群算法在平面度误差评定中的应用[J]. 光学 精密工程,2012,20(2):422-430.LUO J, WANG Q, FU L. Application of modified artificial bee colony algorithm of flatness error evaluation [J]. Opt. Precision Eng., 2012, 20(2): 422-430. (in Chinese)[14]SUN J, FANG W, XU W B. Particle swarm optimization with particles having quantum behavior[C]. Proceedings of Congress on Evolutionary Computation, Portland, USA: CEC, 2004: 326-331.[15]方伟,孙俊,谢振平,等. 量子粒子群优化算法的收敛性分析及控制参数研究[J]. 物理学报,2010,59(6):3686-3694.FANG W, SUN J, XIE ZH P, et al.. Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter[J]. Acta Physica Sinica, 2010, 59(6): 3686-3694. (in Chinese)
0
浏览量
118
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构