浏览全部资源
扫码关注微信
中国工程物理研究院 机械制造工艺研究所,四川 绵阳,621900
收稿日期:2013-03-20,
修回日期:2013-05-30,
网络出版日期:2012-10-19,
纸质出版日期:2013-10-15
移动端阅览
刘乾 杨维川 袁道成 王洋. 光谱共焦显微镜的线性色散物镜设计[J]. 光学精密工程, 2013,21(10): 2473-2479
LIU Qian YANG Wei-chuan YUAN Dao-cheng WANG Yang. Design of Linear Dispersive Objective for Chromatic Confocal Microscope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2473-2479
刘乾 杨维川 袁道成 王洋. 光谱共焦显微镜的线性色散物镜设计[J]. 光学精密工程, 2013,21(10): 2473-2479 DOI: 10.3788/OPE.20132110.2473.
LIU Qian YANG Wei-chuan YUAN Dao-cheng WANG Yang. Design of Linear Dispersive Objective for Chromatic Confocal Microscope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2473-2479 DOI: 10.3788/OPE.20132110.2473.
由于色散物镜轴向色散与波长间的非线性会导致仪器整体性能下降,本文研究了光学系统轴向色散与透镜组之间的关系,推导了轴向色散的传递公式。为得到较大的线性轴向色散,根据轴向色散的传递公式提出了一种正负透镜组均采用线性色散光焦度组合且正负透镜组分离的镜头结构。光学优化设计表明,具有正负透镜分离结构的色散物镜可以得到低的球差和大的轴向色散,而且具有较大的工作距离。设计的色散物镜在430~710 nm得到了1 mm的轴向色散,轴向色散与波长之间的相对非线性度为4.6%,灵敏度的波动量小于整体的1/3,优于之前的研究。采用所设计的色散物镜,光谱共焦显微镜能够得到优于0.3 m的轴向分辨率和优于5 m的横向分辨率,满足精密测量的需求。
As the nonlinearity between the Axial Chromatic Aberration (ACA) and the wavelength of a dispersive objective would lower the overall performance of a chromatic confocal microscope
the dependence of the ACA of an optical system on the lens assembly was studied and the transfer principle of ACA was derived. Based on ACA transfer principle
a dispersive objective configured with a negative and a positive lens groups was proposed
in which both the negative and positive lens groups could generate the linear ACA with specified focal power distribution. Optimized result indicates that the dispersive objective based on the proposed configuration has small longitudinal aberration
a large ACA
and a long working distance. The ACA of dispersive objective is 1 mm in 430-710 nm. The relative nonlinearity of ACA is about 4.6% and the deviation of sensitivity is less than 1/3 that of a whole
superior to traditional ones. With designed dispersive objective
the chromatic confocal microscope can achieve an axial resolution of 0.3 m and a lateral resolution of 5 m
which satisfies the re-quirements of precise measurement.
王富生, 谭久彬. 表面微观轮廓的高分辨率光学测量方法[J]. 光学 精密工程, 2000, 8(4): 309-315. WANG F SH, TAN J B. Methods of high resolution optical measurement for surface profile [J]. Opt. Precision Eng., 2000, 8(4): 309-315.(in Chinese)[2]曾毅波, 蒋书森, 黄彩虹, 等. 激光共焦扫描显微镜在微机电系统中的应用[J]. 光学 精密工程, 2008, 16(7): 1241-1246.ZENG Y B, JIANG SH S, HUANG C H, et al.. Application of laser scanning confocal microscope in micro-electro-mechanical system [J]. Opt. Precision Eng., 2008, 16(7): 1241-1246.(in Chinese)[3]ARRASMITH C L, PATIL C A, DICKENSHEET D L, et al.. A MEMS based handheld confocal microscope with Raman spectroscopy for in-vivo skin cancer diagnosis [J].SPIE, 2009, 7169:71690N.[4]AHN M K, CHUN B S, SONG C, et al.. Development of in-vivo confocal microscope for reflection and fluore scence imaging simultaneously [J]. SPIE, 2010, 7568: 756821.[5]BROWNE M A, AKINYEMI O, CROSSLEY F, et al.. Stage-scanned chromatically aberrant confocal micro-scope for 3-D surface imaging [J]. SPIE, 1992, 1660:532-541.[6]MCBRIDE J W, BOLTRYK P J, ZHAO Z. The relationship between surface incline and confocal chromatic aberration sensor response [J]. SPIE, 2007, 6618: 66181F.[7]MIKS A, NOVAK A, NOVAK P. Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor [J]. App. Opt., 2010, 49(17): 3259-3264.[8]乔杨,张宁,徐熙平, 等. 基于共焦法的透镜厚度测量系统设计[J]. 仪器仪表学报, 2011, 32(7): 1635-1641.QIAO Y, ZHANG N, XU X P, et al.. Design of lens thickness measurement system based on confocal technology [J]. Chinese Journal of Scientific Instrument, 2011, 32(7): 1635-1641. (in Chinese)[9]马小军, 高党忠, 杨蒙生, 等. 应用白光共焦光谱测量金属薄膜厚度[J]. 光学 精密工程, 2011, 19(1): 17-22.MA X J, GAO D ZH, YANG M SH, et al.. Measurement of thickness of metal thin film by using chromatic confocal spectral technology [J]. Opt. Precision Eng., 2011, 19(1):17-22. (in Chinese)[10]ISO 25178-2010: Geometric Product Specifications (GPS)- Surface texture: areal [S].[11]RUPRECHT A K, PRUSS C, TIZIANI H J, et al.. Confocal micro-optical distance sensor: principle and design [J]. SPIE, 2005, 5856:128-135.[12]朱万彬, 钟俊, 莫仁芸,等. 光谱共焦位移传感器物镜设计[J]. 光电工程, 2010, 37(8): 62-66.ZHU W B, ZHONG J, MO R Y, et al.. Design of spectral confocal chromatic displacement sensor objective [J]. Opto-Electronic Engineering, 2010, 37(8):62-66. (in Chinese)[13]刘乾, 杨维川, 袁道成, 等. 光谱共焦位移传感器的色散物镜设计[J]. 光电工程, 2011, 28(7): 131-135.LIU Q, YANG W CH, YUAN D CH, et al.. Design of dispersive objective for chromatic confocal displacement sensor [J]. Opto-Electronic Engineering, 2011, 28(7): 131-135. (in Chinese)[14]PRUSS C, RUPRECHT A, KORNER K, et al.. Diffractive elements for chromatic confocal sensors [J]. DGaO Proc., 2005: 106-107.[15]BERKOVIC G, SHAFIR E, GOLUB M A, et al.. Multi-wavelength fiber-optic confocal position sensor with diffractive optics for enhanced measurement range [J].SPIE, 2007, 6619: 66190U.[16]GARZON J, GHARBI T, MENESES J. Real time determination of the optical thickness and topography of tissues by chromatic confocal microscopy [J]. J. Opt. A: Pure Appl. Opt., 2008, 10:1-8.[17]MIKS A, NOVAK J, NOVAK P. Theory of chromatic sensor for topography measurements [J]. SPIE, 2007, 6609: 66090U.[18]刘乾, 杨维川, 袁道成, 等. 光谱共焦显微镜中色散物镜材料的优化选择[J]. 光电工程, 2012, 39(8):111-117.LIU Q, YANG W CH, YUAN D CH, et al.. Optimization and selection of materials for dispersive objective of chromatic confocal microscope [J]. Opto-Electronic Engineering, 2012, 39(8):111-117. (in Chinese)[19]唐志列, 黄佐华, 梁瑞生, 等. 共焦显微镜的纵向分辨率极限及其判据[J]. 量子电子学报, 2000,17(3): 199-204.TANG ZH L, HUANG Z H, LIANG R SH,et al.. The vertical resolution limit and its criterion of confocal microscope [J]. Chinese Journal of Quantum Electronics, 2000, 17(3):199-204. (in Chinese)[20]DOBSON S L, SUN P, FAINMAN Y. Diffractive lenses for chromatic confocal imaging [J]. App. Opt., 1997, 36(20): 4744-4748.
0
浏览量
473
下载量
15
CSCD
关联资源
相关文章
相关作者
相关机构