浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
收稿日期:2012-05-25,
修回日期:2012-07-12,
网络出版日期:2012-10-19,
纸质出版日期:2013-10-15
移动端阅览
田志辉 史振广 刘伟奇 杨怀江 隋永新. 高精度曲率半径测量方法及其不确定度[J]. 光学精密工程, 2013,21(10): 2495-2501
TIAN Zhi-hui SHI Zhen-guang LIU Wei-qi YANG Huai-jiang SUI Yong-xin. High-accuracy measurement method for radius of curvature and its uncertainties[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2495-2501
田志辉 史振广 刘伟奇 杨怀江 隋永新. 高精度曲率半径测量方法及其不确定度[J]. 光学精密工程, 2013,21(10): 2495-2501 DOI: 10.3788/OPE.20132110.2495.
TIAN Zhi-hui SHI Zhen-guang LIU Wei-qi YANG Huai-jiang SUI Yong-xin. High-accuracy measurement method for radius of curvature and its uncertainties[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2495-2501 DOI: 10.3788/OPE.20132110.2495.
为了实现对光学元件曲率半径的高精度测量,提出了一种利用反射式计算全息元件结合波长移相干涉测长进行光学球面曲率半径测量的检测新方法。测试中
反射式计算全息元件作为基准
用来标定所用标准镜头参考面的曲率半径,同时利用波长移相技术对干涉腔腔长进行测量,通过计算分析即可得到被测元件的曲率半径。本文首先描述了该方法的系统构成及其工作原理。然后,结合实例,运用理论分析与软件仿真模拟,对该方法的测量不确定度进行了详细地分析。最后,进行了实验验证。在实验室现有的商用波长移相干涉仪上
利用此方法对一口径为100 mm的球面样品进行了曲率半径测量,测量结果为157.1083 mm。接着,利用接触式球径仪法对同一样品进行了对比测量,两测试结果的相对误差小于0.02%。该方法较其它目前已有的非接触式曲率半径测量方法相比,具有误差源少、测量精度高、易于操作等优点。
In order to realize high-accuracy measurement for radius of curvature (ROC) of optical elements
a novel interferometric testing approach to measuring ROC of spherical optical surfaces which uses reflective-type computer-generated-hologram (RTCGH) and wavelength phase-shifting technology is proposed. The RTCGH is used as a reference to calibrate the ROC of the reference surface of the transmission sphere lens. At the same time
the lengths of interferometric cavities are measured by using wavelength phase-shifting. Then
the test ROC can be calculated by above data. In this paper
we firstly describe the system structure and the measuring principle of our method. And then
combining with an example
uncertainty analysis is researched in detail by theoretical derivations and computer simulations. Finally
a verification experiment is carried out. By using a commercial wavelength phase-shifting interferometer in our laboratory
the ROC of an optical spherical sample with 100 mm aperture is tested by the method. The test result is 157.1083 mm. For comparison and validation
the sample is also tested by a spherometer. The relative error is less than 0.02%. Compared with other non-contact ROC measurement methods
this testing way has less error sources
and can achieve high-precision metrology while maintaining relative convenient-operation.
MALACARA D. Optical Shop Testing[M]. 3th ed. New York: John Wiley and Sons, Inc., 2007:820-823.[2]周学海. 光学球面曲率半径的测量[J]. 光学 精密工程,1984(6):32-40. ZHOU X H. Measurement of radius of curvature for optical spherical surface[J]. Opt. Precision Eng., 1984(6):32-40. (in Chinese)[3]SCHMITZ T L,GARDNER N,VAUGHN M, et al.. Improving optical bench radius measurements using stage error motion data[J]. Appl.Opt., 2008, 47(36): 6692-6700.[4]DAVIES A, SCHMITZ T L. Correcting for stage error motions in radius measurements[J]. Appl.Opt., 2005, 44(28): 5884-5893.[5]杨李茗,叶海仙. 大口径大曲率半径光学元件的高精度检测[J]. 光学 精密工程,2011,19(6):1207-1212. YANG L M, YE H X. High-precision metrology for optical components with large-apertures and large radii of curvature [J]. Opt. Precision Eng., 2011, 19(6): 1207-1212. (in Chinese)[6]林旭东,陈涛,明名,等. 球面拼接镜的相对曲率半径测量[J]. 光学 精密工程,2010,18(1):75-82. LIN X D, CHEN T, MING M, et al.. Measurement of relative curvature radius for spherical segmented mirrors[J]. Opt. Precision Eng., 2010, 18(1): 75-82. (in Chinese)[7]ZHAO C,ZEHNDER R,BURGE J H. Measuring the radius of curvature of a spherical mirror with an interferometer and a laser tracker[J]. Opt. Eng., 2005,44(9): 090506.[8]王孝坤,郑立功. 一种精确测量光学球面曲率半径的方法[J]. 光学学报,2011,31(8):0812010.WANG X K, ZHENG L G. A method for testing radius of curvature of optical spheric surface[J]. Acta Optica Sinica, 2011, 31(8):0812010. (in Chinese)[9]CAI X,CHANG S,FLUERARU C. Compact system for measurement of optical surfaces having a large radius of curvature [J]. Opt. Eng., 2006, 45(7): 073603.[10]SPIRIDONOV M,TOEBAERT D. Simple yet accurate noncontact device for measuring the radius of curvature of a spherical mirror [J]. Appl.Opt., 2006, 45(26): 6805-6811.[11]WANG Q, GAO G, GRIESMANN U. Radius measurement of spherical surfaces with large radii-of-curvature using dual-focus zone plates[J]. Optical Fabrication and Testing, Technical Digest (CD) (Optical Society of America), 2008:OWB2.[12]LAWALL J R. High resolution determination of radii of curvature using Fabry-Perot interferometry[J]. Meas. Sci. Technol., 2009, 20(4): 045302.[13]ANAND A,CHHANIWAL V K. Measurement of parameters of simple lenses using digital holographic interferometry and a synthetic reference wave[J]. Appl.Opt., 2007, 46(11): 2022-2026.[14]DECK L L. Absolute distance measurements using FTPSI with a widely tunable IR laser[J]. SPIE,2002,4778:218-226.[15]GHIM Y S, SURATKAR A, DAVIES A, et al.. Absolute thickness measurement of silicon wafer using wavelength scanning interferometer[J]. SPIE,2011,8133:813312.[16]NICOLAUS R A, BNSCHO G. Absolute volume determination of a silicon sphere with the spherical interferometer of PTB[J]. Metrologia, 2005, 42(1): 24-31.[17]TIAN Z H,YANG W,SUI Y X, et al.. A high-accuracy and convenient figure measurement system for large convex lens[J]. Opt.Epress, 2012, 20(10):10761-10775.[18]卢海平,刘伟奇,康玉思,等. 超大视场头盔显示光学系统设计[J]. 光学 精密工程,2012,20(5):979-987. LU H P, LIU W Q, KANG Y S, et al.. Design of compact optical system in wide-angle head mounted display [J]. Opt. Precision Eng., 2012, 20(5):979-987. (in Chinese)[19]SURATKAR A,GHIM Y S,DAVIES A. Uncertainty analysis on the absolute thickness of a cavity using a commercial wavelength scanning interferometer [J]. SPIE,2008,7063:7063R.
0
浏览量
992
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构