浏览全部资源
扫码关注微信
苏州大学 机器人与微系统研究中心,江苏 苏州 215021
收稿日期:2013-03-15,
修回日期:2013-05-09,
网络出版日期:2012-10-19,
纸质出版日期:2013-10-15
移动端阅览
许晓威 陈立国 孙立宁. 半月形电极微液滴驱动微流控芯片[J]. 光学精密工程, 2013,21(10): 2557-2565
XU Xiao-wei CHEN Li-guo SUN Li-ning. Micro-droplet driven digital mirofluidics device with crescent electrode[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2557-2565
许晓威 陈立国 孙立宁. 半月形电极微液滴驱动微流控芯片[J]. 光学精密工程, 2013,21(10): 2557-2565 DOI: 10.3788/OPE.20132110.2557.
XU Xiao-wei CHEN Li-guo SUN Li-ning. Micro-droplet driven digital mirofluidics device with crescent electrode[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2557-2565 DOI: 10.3788/OPE.20132110.2557.
针对目前数字微流控芯片驱动电压比较高的问题,本文对比传统的驱动电极结构,研制了一种可以降低驱动电压的半月形驱动电极数字微流控芯片。首先,基于介电湿润原理,分析微液滴所受介电湿润力和微液滴接触圆上有效三相接触线所对应弦长的关系。接着,对比分析了传统的方形、叉齿形驱动电极与提出的半月形驱动电极上液滴有效三相接触线所形成的弦长大小;分析得出3种驱动电极结构中半月形驱动电极所形成的有效弦长最大,从而表明半月形驱动电极的数字微流控芯片上介电驱动力最大。最后,利用设计制作的3种驱动电极介电湿润芯片分别实验验证驱动液滴的效果。结果表明,所研制的半月形驱动电极数字微流控芯片的最小驱动电压分别比方形和叉齿形驱动电极芯片降低了约37%和67%。另外,当有效驱动电压为60 V时,半月形驱动电极芯片上2 L去离子水微液滴的速度约为10 cm/s,分别是方形与叉齿形驱动电极芯片上液滴速度的3倍和2倍。得到的实验数据证明了半月形驱动电极数字微流控芯片实现了降低芯片驱动电压的目的。
null
JONG H C, JAMES J. Twin-plate electrowetting for efficient digital microfluidics [J]. Sensors and Actuators, 2011,160(1):1581-1585.[2]NEGAR R, ALI D。 A novel electrode shape for electrowetting-based microfluidics [J].Colloids and Surfaces A: Physicochem. Eng. Aspects, 2010,365(1-3):230-236.[3]LING S J, CHIH Y H, CHUN H C. Effect of electrode geometry on performance of EWOD device driven by battery-based system [J].Biomed Microdevices, 2009, 11(5):1029-1036.[4]MAIS J J, MICHAEL S B,KAMLESH D P. Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine [J]. Lab On a Chip, 2012,14(12):2452-2463.[5]HONG S D,DEVENDRA K M. Dielectric materials for electrowetting-on-dielectric actuation [J]. Microsyst Technol, 2010, 16(3):449-460.[6]JONG H C, DAE Y C, JAMES J P, et al.. Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric [J]. Microfluid Nanofluid , 2010,8(2):269-273.[7]ARGHYA N B, SHIZHI Q,SANG W J. High-speed droplet actuation on single-plate electrode arrays [J]. Journal of Colloid and Interface Science, 2011, 362(2):2567-574.[8]RANDALL E B, ERIC J W, et al.. A microfluidic chip-compatible bioassay based on single-molecule detection with high sensitivity and multiplexing [J]. Lab on a Chip, 2010, 10(7):843-851.[9]IRENA B, SAM H A,AARON R W. A microfluidic platform for complete mammalian cell culture [J]. Lab on a Chip, 2010, 10(12): 1536-1542.[10]YONG Z, RICHARD N, et al.. High performance single cell genetic analysis using microfluidic emulsion denerator arrays [J]. Anal. Chem., 2010, 82(8): 3183-3190.[11]ALI A,JONATHAN F H,HOMAYOUN N, et al.. Electrohydrodynamic modeling of microdroplet transient dynamics in electrocapillaty-based digital microfluidic devices [J]. Microfluid Nanofluid, 2011, 10(5): 1019-1032.[12]LIVIU C, DANIEL B, et al.. Numerical modeling of electrowetting process in digital microfluidic devices [J]. Computers and Fluids,2010,39(9):1510-1515.[13]CLIME L, BRASSARD D, et al.. Numerical modeling of electrowetting transport processes for digital microfluidics [J]. Microfluid Nanofluid, 2010, 8(5): 599-608.[14]SINWOOK P, PAVITHRA A L, WIJETHUNGA, et al.. On-chip characterization of cryoprotective agent mixtures using an EWOD-based digital microfluidic device [J]. Lab on a Chip, 2011, 11(13): 2212-2221.
0
浏览量
462
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构