浏览全部资源
扫码关注微信
1. 装甲兵工程学院 科研部 北京,100072
2. 北京科技大学 材料科学与工程学院 北京,100083
收稿日期:2013-04-07,
修回日期:2013-05-27,
网络出版日期:2012-10-19,
纸质出版日期:2013-10-15
移动端阅览
杜建华 刘彦伟 李园园. 纳米颗粒增强铜基摩擦材料的摩擦学性能[J]. 光学精密工程, 2013,21(10): 2581-2586
DU Jian-hua LIU Yan-wei LI Yuan-yuan. Friction properties of Cu-based friction materials reinforced by nanometer materials[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2581-2586
杜建华 刘彦伟 李园园. 纳米颗粒增强铜基摩擦材料的摩擦学性能[J]. 光学精密工程, 2013,21(10): 2581-2586 DOI: 10.3788/OPE.20132110.2581.
DU Jian-hua LIU Yan-wei LI Yuan-yuan. Friction properties of Cu-based friction materials reinforced by nanometer materials[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2581-2586 DOI: 10.3788/OPE.20132110.2581.
基于粉末冶金法分别制备了纳米氮化铝和纳米石墨增强铜基摩擦材料,研究了纳米颗粒对铜基摩擦材料的摩擦磨损和耐热性能的影响规律。采用扫描电子显微镜(SEM)分析了材料的微观结构和磨损形貌,并利用惯性摩擦磨损试验机考核其摩擦学性能。实验结果表明:与未添加纳米颗粒的摩擦材料相比,添加纳米氮化铝和纳米石墨的摩擦材料的摩擦因数高而稳定,且随接合次数增加无明显衰退现象;耐磨性能分别提高了25 %和11 %;耐热性能分别提高了18 % 和25 %。未添加纳米颗粒的摩擦材料的磨损机制主要为犁沟式磨料磨损,纳米氮化铝和纳米石墨能减少摩擦材料的磨料磨损,从而增强了摩擦材料的耐磨性。实验结果显示,纳米氮化铝和纳米石墨可显著提高铜基摩擦材料的摩擦学性能。
To enhance the friction properties of Cu-based friction materials and study the friction properties of Cu-based friction materials with nanometer particles
the Cu-based friction materials enhanced with nano-AlN (n-AlN) and nano-graphite (n-C) were prepared by powder metallurgy technology
respectively. The effects of nanometer particles on the frictional wear and heat-resistant characteristics of Cu-based friction materials were researched. Then
the microstructures and friction performance were analyzed through a Scanning Electron Microscope (SEM) and a friction tester
respectively. The results indicate that the friction coefficients of friction materials with n-AlN and n-C are higher and stable as comparied with that of the friction materials without any nanometer materials
the wear resistances have been improved by 25 % and 11 %
respectively. The heat resistances of the materials with n-AlN and n-C have been improved by 18 % and 25 %
respectively. The n-AlN and n-C particles can reduce the abrasive wear and enhance the wear resistances of the Cu-based friction materials. The results demonstrate that the n-AlN and n-C particles can enhance the properties of Cu-based friction materials remarkably.
李兵,杨圣岽,曲波,等. 汽车摩擦材料现状与发展势[J]. 材料导报,2012(S1):348-350. LI B, YANG SH D, QU B, et al.. Research and development of automobile friction material [J]. Materials Review, 2012(S1):348-350. (in Chinese)[2]王秀飞,黄启忠,尹彩流,等.铜基粉末冶金摩擦材料的湿式摩擦性能[J].中南大学学报,2008,39(3):517-521. WANG X F, HUANG Q ZH, YIN C L,et al.. Wet friction properties of copper-based material via powder metallurgy [J]. Journal of Central South University(Science and Technology), 2008, 39(3): 517-521. (in Chinese) [3]MUSTAFA B, ADEM K. The effect of Al2O3 on the friction performance of automotive brake friction materials [J]. Tribology International, 2007, 40(7):11611169.[4]于川江,姚萍屏. 现代制动用刹车材料的应用研究和展望[J].润滑与密封,2010,35(2):103-106. YU CH J, YAO P P. Progress and prospect of brake materials for modern brake parts [J]. Lubrication Engineering, 2010,35(2):103-106. (in Chinese)[5]XIONG X, JIE C, YAO P P, et al.. Friction and wear behaviors and mechanisms of Fe and SiO2 in Cu-based P/M friction materials [J]. Wear, 2007, 262(9-10):11821186.[6]刘莹,王发辉. 增强纤维对陶瓷基摩擦材料摩擦磨损性能的影响[J]. 摩擦学学报,2012,32(1):27-33.LIU Y, WANG F H. Effects of reinforced fibers on friction and wear properties of ceramic-based friction material [J]. Tribology, 2012,32(1):27-33. (in Chinese)[7]杜建华,刘贵民,谢凤宽,等. 纳米SiC晶须增强铜基纳米复合材料摩擦学性能研究[J]. 装甲兵工程学院学报,2009,23(1):7-11.DU J H, LIU G M, XIE F K, et al.. Study on the tribological performance of nano-SiCw reinforced Cu-based composites [J]. Journal of Academy of Armored Force Engineering, 2009,23(1):7-11. (in Chinese)[8]郭振山,王世斌, 李林安, 等. 纳米尺度金属薄膜在拉伸状态下的稳定性[J]. 光学 精密工程, 2011,18(9):2293-2299.GUO ZH SH, WANG SH B,LI L A, et al.. Effects of raw materials on wear performance of brake friction composites [J]. Opt. Precision Eng., 2011,18(9):2293-2299. (in Chinese)[9]荣皓, 赵钢, 褚家如. 用于热机械微纳加工的掺Al多晶硅加热器[J]. 光学 精密工程, 2011,18(1):124-131.RONG H, ZHAO G, CHU J R. Al doped poly-Si micro-heater for thermomechanical fabrication of micro/nano structure [J]. Opt. Precision Eng., 2011,18(1):124-131. (in Chinese) [10]陈健, 周柯, 穆立文,等. 纳米铜粉粒径对NAO型摩擦材料摩擦磨损性能的影响[J]. 非金属矿, 2012,3(4):76-78.CHEN J, ZHOU K, MU L W, et al.. Effect of copper particle size on friction and wear performance of NAO friction material [J]. Non-Metallic Mines, 2012,3(4):76-78. (in Chinese)
0
浏览量
412
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构