浏览全部资源
扫码关注微信
1. 北京航空航天大学 惯性技术重点实验室 北京,100191
2. 北京航空航天大学 新型惯性仪表与导航技术国防重点学科实验室, 北京100191
3. 北京航空航天大学宇航学院
收稿日期:2013-03-11,
修回日期:2013-05-09,
网络出版日期:2012-10-19,
纸质出版日期:2013-10-15
移动端阅览
汤继强 张永斌 赵丽滨. 过盈装配的金属轮毂-复合材料飞轮转子[J]. 光学精密工程, 2013,21(10): 2639-2647
TANG Ji-qiang ZHANG Yong-bin ZHAO Li-bin. Interference fitted metal-composite material flywheel rotor[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2639-2647
汤继强 张永斌 赵丽滨. 过盈装配的金属轮毂-复合材料飞轮转子[J]. 光学精密工程, 2013,21(10): 2639-2647 DOI: 10.3788/OPE.20132110.2639.
TANG Ji-qiang ZHANG Yong-bin ZHAO Li-bin. Interference fitted metal-composite material flywheel rotor[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2639-2647 DOI: 10.3788/OPE.20132110.2639.
针对一种高储能密度超导磁悬浮储能飞轮,设计了一种由磁轴承、金属轮毂和3个复合材料圆环过盈装配而成的飞轮转子。通过加入金属轮毂来改善转子的应力分布、减小转子的径向应力,保证转子在高速转动状态下磁轴承和复合材料圆环之间的连接强度。转子圆环之间通过过盈装配提供初始压应力,以避免转子在高速转动时发生分层破坏;采用平面应力解析法和有限元法建立转子的应力分析模型,研究了金属轮毂、复合材料圆环厚度和环间过盈量对转子应力分布和强度的影响。最后,提出了转子的优化设计方案。实验结果显示,转子的额定转速达到50 000 r/min,储能总量为1 110 Wh,储能密度达到40 Wh/kg。研究结果表明:加入金属轮毂、增大复合材料外环的厚度以及中环和外环的环间过盈量,可以提高转子的强度、极限转速和储能密度。
To achieve high specific energy density
a carbon rotor without shaft consisting of a hollow hub and three composite cylindrical rings in interference fitted state is designed. The hollow hub made of high strength steel 18Ni350 is used to change the distribution of centrifugal stress
reduce the maximum radial stress and ensure the working gap of radial magnetic bearings be constant when the rotor rotates at a high speed. In order to find out the quantitative relationship among these factors such as the properties of high strength steel hollow hub
thickness ratio of rings
interference between rings and so on
a mathematical calculation model of the stress distribution is established by simplified stress model in plane case
and the mathematical calculation model is proved accurate by the finite element method. These results show that the strength distribution and ultimate speed of the rotor can be improved when the thickness of the outermost ring or the interference between the middle and the outermost ring increases. These results of this paper will give a useful hint for the design and optimization of the mental-composite flywheel rotor.
BITTERLY J G. Flywheel technology: past, present, and 21st century projections [J]. IEEE Aerospace and Electronic Systems Magazine, 1998,13:13-16.[2]刘强,房建成,韩邦成,等. 磁悬浮飞轮锁紧装置及其优化设计[J].光学 精密工程,2010,18(8):1814-1821. LIU Q,FANG J CH,HAN B CH, et al.. Locking device for magnetic bearing flywheel and its optimization [J]. Opt. Precision Eng., 2010,18(8):1814-1821. (in Chinese)[3]王春娥,房建成,汤继强,等. 磁悬浮反作用飞轮热设计方法与实验研究[J].航空学报,2011,32(4):598-607. WANG CH E, FANG J CH,TANG J Q, et al.. Thermal design method and experimental research of magnetically suspended reaction flywheel [J]. Acta Aeronautica et Astronautica Sinica, 2011,32(4):598-607. (in Chinese)[4]韩邦成,刘强. 基于自锁原理的磁悬浮飞轮电磁锁紧机构[J].光学 精密工程,2009,17(10):2456-2464.HAN B CH, LIU Q. Electromagnetic locking device based on self-locking for magnetic suspended flywheel [J]. Opt. Precision Eng., 2009,17(10):2456-2464. (in Chinese)[5]刘彬,房建成,刘刚. 基于TMS320C6713B+FPGA数字控制器实现磁悬浮飞轮主振动控制[J].光学 精密工程,2009,17(1):151-157. LIU B, FANG J CH, LIU G. Implementation if active vibration control for magnetically suspended flywheel based on TMS320C6713B + FPGA digital controller [J]. Opt. Precision Eng., 2009,17(1):151-157. (in Chinese)[6]文少波,蒋书运. 复合材料储能飞轮充放电过程应力分析[J].太阳能学报,2011,32(12):1839-1844. WEN SH B, JIANG SH Y. Stress analysis of composite energy storage flywheel in charge-discharge process [J]. Acta Energy Solaris Sinica, 2011, 32(12):1839-1844. (in Chinese)[7]白越,黎海文,吴一辉,等. 复合材料转子设计[J].光学 精密工程,2007,15(6):852-857. BAI Y, LI H W, WU Y H, et al.. Design of composite flywheel rotor [J]. Opt. Precision Eng., 2011,32(12):1839-1844. (in Chinese)[8]HA S K,KIM H T,HAN S C. Effects of rotor size and epoxy system on the process-induced residual strains within multi-rings composite rotors [J]. Journal of Composite Materials, 2004,38:871-885. [9]TUTUNCU N. Effect of anisotropy on stress in rotating discs [J]. Int. J. Mech. Sci, 1995,37: 873-881.[10]HA S K,JEONG J Y. Effects of winding angles on through-thickness properties and residual strains of thick filament wound composite rings [J]. Composite Science and Technology, 2005,65:27-35.[11]SUNG K H, SEONG J K, SANA U N, et al.. Design optimization and fabrication of a hybrid composite flywheel rotor [J]. Compos Struct, [2012].http://dx.doi.org/10.1016/j.compstruct.2012.04.015.[12]HASAN C,MUZAFFER T,GRKAN A. Stress analysis of curvilinearly orthotropic rotating discs under mechanical and thermal loading [J]. Journal of Reinforced Plastics and Composites, 2005,24: 831-838.[13]WEN SH B,JIANG SH Y. Optimum design of hybrid composite multi-ring flywheel rotor based on displacement method [J]. Composite Science and Technology, 2012,72: 982-998.[14]秦勇,夏源明,毛天祥. 复合材料空心飞轮多环套装整体变形及应力简化精细分析[J].复合材料学报,2003,20(5):95-99. QIN Y, XIA Y M, MAO T X. Simplified and fine analyses of the full deformation and stress of Pressfit of the hollow multi-ring composite flywheel [J]. Acta Materiae Compositae Sinica, 2003, 20(5):95-99. (in Chinese)[15]李成,万志超,郑艳萍,等. 不同杨氏模量对复合材料储能飞轮应力及位移影响之比较[J].光学 精密工程,2009,17(7):1609-1614. LI CH, WAN ZH CH, ZHENG Y P, et al.. Comparison of effects of different youngs moduli on stress and displacement of composite flywheel [J]. Opt. Precision Eng., 2009,17(7):1609-1614. ( in Chinese)[16]TANG JQ, FANG J C,GE S S. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel [J]. Physica C, 2012,483:178-185.[17]GENTA G. Kinetic Energy Storage: Theory and Practice of Advanced Flywheel Systems [J]. London: Butterworth & Co Ltd, 1985: 60- 69.
0
浏览量
736
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构