浏览全部资源
扫码关注微信
1. Tokyo,Japan,182-8585
2. 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林&nbsp
3. 长春&nbsp
收稿日期:2013-01-22,
修回日期:2013-02-27,
网络出版日期:2012-10-19,
纸质出版日期:2013-10-15
移动端阅览
郭抗 巩岩. 6-PSS型光学元件精密轴向调节机构[J]. 光学精密工程, 2013,21(10): 2648-2655
GUO Kang GONG Yan. Precise axial adjustment mechanism with 6-PSS type of optical elements[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2648-2655
郭抗 巩岩. 6-PSS型光学元件精密轴向调节机构[J]. 光学精密工程, 2013,21(10): 2648-2655 DOI: 10.3788/OPE.20132110.2648.
GUO Kang GONG Yan. Precise axial adjustment mechanism with 6-PSS type of optical elements[J]. Editorial Office of Optics and Precision Engineering, 2013,21(10): 2648-2655 DOI: 10.3788/OPE.20132110.2648.
设计了一种采用6-PSS型并联机构的光学元件精密轴向调节机构,以使光刻物镜中光学元件的调节行程达微米级,调节精度达纳米级。将6-PSS型并联机构中的6个移动副改进为3个,减少了驱动器的使用数量,提高了轴向调节机构的可靠性;设计了一种圆角薄柔性铰链结构作为6-PSS型并联机构中的球铰副,实现了轴向调节机构的结构一体化,简化了光机组件的装调过程,提高了机构的机械精度;利用空间矢量法分析了机构输入构件与输出构件之间的位置关系,推导出了机构的传动比表达式,为机构主要结构尺寸的选取提供了依据。轴向调节机构的验证试验结果表明:机构传动比的理论计算值接近于实测值;轴向调节机构的调节行程为74.4 m,调节精度在40 nm以内,满足光刻物镜中光学元件轴向调节机构的使用需求。
A precise axial adjustment mechanism based on 6-PSS type parallel mechanism was designed to realize the stroke adjustment in micrometer sizes and the accuracy adjustment in nanometer sizes for optical elements in a photolithographic objective lens. The amount of the prismatic pairs in the 6-PSS type parallel mechanism was improved into 3 from 6 to decrease the usage number of the actuators and increase the reliability of the axial adjustment mechanism. A fillet thin flexure hinge was designed as the spherical hinge in the 6-PSS parallel mechanism to realize monolithic configuration of the axial adjustment mechanism
by which the alignment process of the optical-mechanical components was simplified and the mechanical accuracy of the mechanism was improved. Based on space vector method
the position relationship between input components and output components of the adjustment mechanism was analyzed and the expression of transmission ratio was derived to provide a basis for determining the primary structural dimension of the axial adjustment mechanism. Verification test results of the axial adjustment mechanism show that the numerical result of the transmission ratio is in good agreement with the experimental one; the adjustment stroke of the axial adjustment mechanism is 74.4 m and the adjustment accuracy is within 40 nm
which satisfies the operation requirement of the photolithographic objective lens.
国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011~2020)[M]. 北京:科学出版社,2010.Engineering and Materials Science Department of the National Natural Science Foundation of China. Development strategy report of the mechanical engineering discipline (2011~2020) [M]. Beijing: Science Press, 2010. (in Chinese)[2]许伟才,黄玮,杨旺. 投影光刻物镜倍率的公差分析与补偿[J]. 光学学报,2011,31(11):1122003.XU W C, HUANG W, YANG W. Magnification tolerancing and compensation for the lithographic projection lens [J]. Acta Optica Sinica, 2011, 31(11):1122003. (in Chinese)[3]安源,齐迎春. 空间相机直线调焦机构的设计[J]. 光学 精密工程, 2009, 17(3): 609-614.AN Y, QI Y CH. Design of straight line focusing mechanism for space camera [J]. Opt. Precision Eng., 2009, 17(3): 609-614. (in Chinese)[4]王书新,李景林,刘磊,等. 大尺寸焦平面空间相机调焦机构的精度分析[J]. 光学 精密工程, 2010, 18(10): 2239-2243.WANG SH X, LI J L, LIU L, et al.. Accuracy analysis of focusing mechanism in space camera with long-focal-plane [J]. Opt. Precision Eng., 2010, 18(10):2239-2243. (in Chinese)[5]贾学志,王栋,张雷,等. 轻型空间相机调焦机构的优化设计与精度试验[J]. 光学 精密工程, 2011, 19(8): 1824-1831.JIA X ZH, WANG D, ZHANG L, et al.. Optimizing design and precision experiment of focusing mechanism in lightweight space camera [J]. Opt. Precision Eng., 2011, 19(8): 1824-1831. (in Chinese)[6]刘磊,曹国华. 大视场长焦面光学遥感器双凸轮式焦面调焦机构[J]. 光学 精密工程, 2012, 20(9):1939-1944.LIU L, CAO G H. Double cam focusing mechanism of space camera with wide field and long-focal-plane [J]. Opt. Precision Eng., 2012, 20(9):1939-1944. (in Chinese)[7]朱华征,范大鹏,张智永,等. 精密光路偏转及焦距调整机构的发展[J].激光与红外,2009,39(10):1028-1033.ZHU H ZH, FAN D P, ZHANG ZH Y, et al.. Development of precise light beam steering and focusing equipments [J]. Laser & Infrared, 2009, 39(10):1028-1033. (in Chinese)[8]郭抗,巩岩,倪明阳,等. 光学元件一体化精密轴向调整机构的设计[J].光学学报, 2012, 32(S1): s122002.GUO K, GONG Y, NI M Y, et al.. Design of a monolithic apparatus for the axial fine adjustment of optical element [J]. Acta Optica Sinica, 2012,32(S1):s122002. (in Chinese)[9]孙立宁,董为,杜志江. 基于几何非线性方法的大行程柔性并联机器人位置解[J]. 机械工程学报,2005,41(10):71-74.SUN L N, DONG W, DU ZH J. Kinematics analysis of a parallel manipulator with long travel range flexure hinges based on geometric nonlinear method [J]. Chinese Journal of Mechanical Engineering, 2005, 41(10):71-74. (in Chinese)[10]胡鹏浩,李松原. 3-PSS并联机构正解及其在坐标测量机中的应用[J]. 光学 精密工程, 2012, 20(4):782-788.HU P H, LI S Y. Kinematic solution of 3-PSS parallel mechanism and its application in parallel CMM [J]. Opt. Precision Eng., 2012, 20(4):782-788. (in Chinese)[11]黄真,刘婧芳,李艳文.150年机构自由度的通用公式问题[J]. 燕山大学学报,2011,35(1):1-14.HUANG ZH, LIU J F, LI Y W. 150-year unified mobility formula issue [J]. Journal of Yanshan University, 2011,35(1):1-14. (in Chinese)[12]金振林,王军,高峰.新型6_PSS并联机器人工作空间分析[J]. 中国机械工程,2002,13 (13):1088-1090.JIN ZH L, WANG J, GAO F. Workspace analysis of a novel 6- PSS parallel manipulator [J]. China Mechanical Engineering, 2002, 13(13):1088-1090. (in Chinese)[13]金振林,高峰.新型基于6-PSS三维平台机构的并联微动机器人[J].仪器仪表学报,2001,22(6):566-569.JIN ZH L, GAO F. A novel parallel micro- motion manipulator based on 6- PSS three-dimensional platform mechanism [J]. Chinese Journal of Scientific Instrument, 2001, 22 (6):566-569. (in Chinese)[14]王旭永,王显正,张颖,等.三自由度并联驱动平台机构的位置逆解及其分析[J]. 上海交通大学学报,1998,32(1):102-104.WANG X Y, WANG X ZH, ZHANG Y, et al.. Investigation on inverse positions solution of 3-DOF parallel driven platform [J]. Journal of Shanghai Jiaotong University, 1998, 32(1):102-104. (in Chinese)
0
浏览量
344
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构