浏览全部资源
扫码关注微信
1. .中国科学院 长春光学精密机械与物理研究所,吉林 长春,130033
2. .中国科学技术大学 自动化系,安徽 合肥,230027
收稿日期:2013-04-11,
修回日期:2013-05-14,
网络出版日期:2013-11-22,
纸质出版日期:2013-11-15
移动端阅览
王永, 姚太克, 周烽, 张丽敏. 望远镜副镜三自由度并联支撑构型研究与运动分析[J]. 光学精密工程, 2013,21(11): 2860-2869
WANG Yong, TAO Ta-Ke, ZHOU Feng, ZHANG Li-Min. Type synthesis of 3-DOF parallel support system for telescope secondary mirror[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2860-2869
王永, 姚太克, 周烽, 张丽敏. 望远镜副镜三自由度并联支撑构型研究与运动分析[J]. 光学精密工程, 2013,21(11): 2860-2869 DOI: 10.3788/OPE.20132111.2860.
WANG Yong, TAO Ta-Ke, ZHOU Feng, ZHANG Li-Min. Type synthesis of 3-DOF parallel support system for telescope secondary mirror[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2860-2869 DOI: 10.3788/OPE.20132111.2860.
针对望远镜副镜姿态和焦距自动调整的需求,设计了副镜三自由度并联支撑机构构型,分析了它们的运动学特性并讨论了构型的选取。首先,基于约束螺旋理论,设计了对称三支链两转一移并联机构的构型;根据副镜支撑运动副尽可能少、低惯性、直线驱动等要求,选取了12种可行构型。然后,针对12种可行构型,根据驱动输入特点和支链约束特性,提出分类建模思想,并建立了统一运动学模型;引入ZXZ欧拉角法描述机构姿态,简化了姿态空间和伴随运动的表达和分析方式。最后,以1.2 m口径望远镜系统为例,仿真研究了副镜并联支撑机构的伴随运动。结果表明,支链约束力线矢平行静平台的7种构型具有更小的伴随运动,不大于0.27 mm。该项研究为后续的精度和刚度特性研究提供了基础。
To realize tip/tilt and focus adjustment for a telescope secondary mirror
several types of parallel support systems were designed and their dynamic characteristics and construct selection were analyzed. First
the screw theory was used to realize the type synthesis for 2R1T (two-rotation and one-translation degrees of freedom) parallel mechanisms with 3 symmetrical branches. 12 types of feasible mechanisms with the fewest joint in each branch
the smallest inertia and linear actuators were selected for the support systems. Then
the selected mechanisms were classified according to the actuating characteristics and constraint properties and the kinematics models were established respectively
including actuation models and constraint models. Moreover
ZXZ Euler angels were introduced to describe the orientation of moving platform and to simplify the description and analysis of orientation and parasitic motion for 2R1T parallel mechanisms. Finally
a 1.2 m telescope was taken as an illustrative example to calculate the parasitic motion induced by the constraints. The results indicate that 7 types of mechanisms with constraint force parallel to the static platform have smaller parasitic motions no more than 0.27 mm. The kinematic model and design results provide theory basis for the following analysis on accuracy and stiffness.
程景全. 天文望远镜原理和设计[M]. 北京: 中国科学技术出版社, 2003.CHENG J Q. Principle and Design of Astronomical Telescope [M]. Beijing: China Science & Technology Press, 2003. (in Chinese)[2]CASALTA J M, ARINO J, CANCHADO M, et al.. The performances of GTC secondary mirror drive unit [J]. SPIE, 2004, 5495: 507-517.[3]GEIJO E M, CASALTA J M, CANCHADO M, et al.. VISTA secondary mirror drive performance and test results [J]. SPIE, 2006, 6273: 3801-3810.[4]徐刚, 杨世模, 龚雨兵. 大型光学望远镜副镜位姿精调机构的优化设计[J]. 光学 精密工程, 2008, 16(7): 1181-1189.XU G, YANG SH M, GONG Y B. Optimal design of pose and position fine tuning apparatus for secondary mirror in large optical telescope [J]. Opt. Precision Eng., 2008, 16(7): 1181-1189. (in Chinese)[5]CARRETERO J A, NAHON M, GOSSELIN C M, et al.. Kinematic analysis of a three-DOF parallel mechanism for telescope applications [J]. Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacramento, CA, 1997.[6]CARRETERO J A, PODHORODESKI R P, NAHON M A, et al.. Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator [J]. ASME J. Mech. Des., 2000, 122(1): 17-24.[7]LI Q C. Parasitic motion comparison of 3-PRS parallel mechanism with different limb arrangements [J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(2): 389-396.[8]GALLARDO J, OROZCO H, RICO J M. Kinematics of a 3-RPS parallel manipulators by means of screw theory[J]. International Journal of Advanced Manufacturing Technology, 2008,36(5):598-605.[9]贺新升, 高春甫, 王彬, 等. 太阳自动跟踪机构的设计和位姿分析[J]. 光学 精密工程, 2012, 20(5): 1048-1054.HE X S, GAO C F, WANG B, et al.. Design and positional posture analysis of parallel sun auto-tracking mechanism[J]. Opt. Precision Eng., 2012, 20(5): 1048-1054. (in Chinese)[10]TSAI L W, JOSHI S A. Kinematics and optimization of a spatial 3-UPU parallel manipulator [J]. ASME J. Mech. Design, 2000, 122(4): 439-446.[11]程刚, 葛世荣, 蒋世磊. 3-UCR并联机构的瞬态运动学研究[J]. 光学 精密工程, 2008, 16(1): 108-113.CHENG G, GE S R, JIANG S L. Research on transient kinematics characteristics of 3-UCR parallel robot [J]. Opt. Precision Eng., 2008, 16(1): 108-113. (in Chinese)[12]刘辛军, 吴超, 汪劲松, 等. [PP]S类并联机器人机构姿态描述方法[J]. 机械工程学报, 2008, 44(10): 19-23.LIU X J, WU C, WANG J S, et al.. Attitude description method of [PP]S type parallel robotic mechanisms [J]. Chinese Journal of Mechanical Engineering, 2008, 44(10): 19-23.[13]黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京: 高等教育出版社, 2006.HUANG ZH, ZHAO Y SH, ZHAO T SH. Advanced Spatial Mechanism [M]. Beijing: Higher Education Press, 2006. (in Chinese)[14]李仕华. 几种空间少自由度并联机器人机构分析与综合的理论研究[D]. 秦皇岛: 燕山大学, 2004.LI SH H. Some theoretical issues on analysis and synthesis of lower-mobility parallel mechanisms [D]. Qinhuangdao: Yanshan University, 2004. (in Chinese)
0
浏览量
167
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构