浏览全部资源
扫码关注微信
南京理工大学 机械工程学院,江苏 南京,210094
收稿日期:2013-04-12,
修回日期:2013-06-16,
网络出版日期:2013-11-22,
纸质出版日期:2013-11-15
移动端阅览
杨亮, 苏岩, 裘安萍, 夏国明. 高品质因数微机械陀螺的温度自补偿[J]. 光学精密工程, 2013,21(11): 2870-2876
YANG Liang, SU Yan, QIU An-Ping, JIA Guo-Meng. Self-temperature compensation for high quality factor Micro-machined gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2870-2876
杨亮, 苏岩, 裘安萍, 夏国明. 高品质因数微机械陀螺的温度自补偿[J]. 光学精密工程, 2013,21(11): 2870-2876 DOI: 10.3788/OPE.20132111.2870.
YANG Liang, SU Yan, QIU An-Ping, JIA Guo-Meng. Self-temperature compensation for high quality factor Micro-machined gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2870-2876 DOI: 10.3788/OPE.20132111.2870.
建立了以微机械陀螺驱动模态固有频率为虚拟温度传感器的温度补偿系统,以实现对微机械陀螺标度因数和零偏的高精度温度补偿。研究了自主设计的微机械陀螺的驱动模态固有频率的温度特性,通过实验手段获得了频率的温度系数为(-26.92.03)10-6 ℃,且温度测量精度1 s平均时为0.075 ℃,20 s平均时为0.004 ℃。在分析微机械陀螺标度因数和零偏温度特性的基础上,提出了一种二阶温度补偿方案,并给出了补偿原理和算法示意图。最后,利用驱动模态固有频率对标度因数和零偏进行了温度自补偿。实验结果表明,在-40 ℃到60 ℃,标度因数的最大相对变化量从补偿前的2.1%下降到了0.05%;零偏的最大相对变化量从补偿前的8.9%下降到了0.1%;室温下2 h的零偏实验表明,温度补偿后微机械陀螺的零偏不稳定性由4.1()/h降到了0.42()/h,满足了微机械陀螺温度补偿的高精度要求。
A temperature compensation system was build by using the drive-mode natural frequency as a virtual temperature sensor to achieve high-precision temperature compensation for the scale factor and zero bias of a micro-machined gyroscope. The temperature characteristics of the drive-mode natural frequency were explore
and its coefficient (-26.92.03)10-6 ℃ was obtained. The frequency stability was translated to temperature precision to be 0.075 ℃ at 1 s average and 0.004 ℃ at 20 s average. On the basis of analysis of the temperature characteristics of scale factor and zero bias
a second-order temperature compensation scheme was proposed
and the principle and block-diagram of compensation algorithm were given. Finally
the scale factor and zero bias were compensated using the drive-mode natural frequency. The experiment results show that the maximum relative change of scale factor is reduced from 2.1% to 0.05% and that of zero bias is reduced from 8.9% to 0.1% at -40 ℃ to 60 ℃. The zero bias experiment at room temperature for 2 hours shows that the bias nonstability is reduced from 4.1()/h to 0.42()/h after compensation. These results satisfy the demand of micro-machined gyroscopes for high-precision temperature compensation.
AJIT S, MOHAMMAD F Z, FARROKH A. A Sub-0.2o/hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching[J]. IEEE Journal of Solid-State Circuits, 2009, 44(5): 1593-1608.[2]AJIT S. CMOS systems and circuits for sub-degree per hour MEMS gyroscopes[D]. United States: Georgia, Georgia Institute of Technology, 2007.[3]PRIKHODKO I P, ZOTOV S A, TRUSOV A A, et al.. Sub-degree-per-hour Silico MEMS rate sensor wity 1 million qfactor [C]. Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th international, 2011: 2809-2812.[4]WANG X, WU W, FANG Z, et al.. Temperature drift compensation for hemispherical resonator gyro based on natural frequency[J]. Sensors, 2012, 12(5): 6434-6446.[5]STRAUBE T M. A temperature compensation procedure for performance improvement of mass-produced MEMS gyroscopes based on direct parameter measurement [D]. United States: University of Colorado, 2010.[6]施芹, 苏岩, 裘安萍, 等. MEMS 陀螺仪器件级真空封装技术[J]. 光学 精密工程, 2009, 17(8): 1987-1992.SHI Q, SU Y, QIU A P, et al.. Device level vacuum packaging technologies of MEMS gyroscopes[J]. Opt. Precision Eng., 2009, 17(8): 1987-1992. (in Chinese)[7]施芹, 裘安萍, 苏岩, 等. 硅微陀螺仪的机械耦合误差分析[J]. 光学 精密工程, 2008, 16(5): 894-898.SHI Q, QIU A P, SU Y, et al.. Mechanical coupling error of silicon microgyroscope [J]. Opt. Precision Eng., 2008, 16(5): 894-898. (in Chinese)[8]WEINBERG M S, KOUREPENIS A. Error sources in in-plane silicon tuning-fork MEMS gyroscopes[J]. Journal of Microelectromechanical Systems, 2006, 15(3): 479-491.[9]XIA D, CHEN S, WANG S, et al.. Microgyroscope temperature effects and compensation-control methods [J]. Sensors, 2009, 9(10): 8349-8376.[10]凤瑞, 裘安萍, 施芹, 等. 双质量硅微机械陀螺固有频率温度特性研究[J]. 南京理工大学学报, 2013, 37(1): 1-7.FENG R, QIU A P, SHI Q, et al.. Temperature characteristic of natural frequency of double-mass silicon micro-mechanical gyroscope [J]. Journal of Nanjing University of Science and Technology, 2013, 37(1): 1-7. (in Chinese)[11]ACAR C, SCHOFIELD A R, TRUSOV A A, et al.. Environmentally robust MEMS vibratory gyroscopes for automotive applications[J]. IEEE Sensors Journal, 2009, 9(12): 1895-1906.[12]HOPCROFT M A, NIX W D, KENNY T W. What is the Youngs modulus of Silicon?[J]. Journal of Microelectromechanical Systems, 2010, 19(2): 229-238.[13]李新刚. 微机电陀螺误差建模及其在飞行器组合导航中的应用[D]. 西安:西北工业大学, 2004.LI X G. Error modeling of MEMS gyroscopes and its application on fight vehicle integrated navigation [D]. Xian:Northewstern Polytechnical University, 2004. (in Chinese)
0
浏览量
81
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构