浏览全部资源
扫码关注微信
1. 北京航空航天大学 新型惯性仪表与导航系统技术国防重点学科实验室 北京,100191
2. 北京航空航天大学 惯性技术重点实验室 北京,100191
收稿日期:2013-05-03,
修回日期:2013-06-14,
网络出版日期:2013-11-22,
纸质出版日期:2013-11-15
移动端阅览
王英广, 房建成, 郑世强, 张寅. 磁悬浮电机高效高精度在线动平衡[J]. 光学精密工程, 2013,21(11): 2884-2892
WANG Yang-An, FANG Jian-Cheng, ZHENG Shi-Jiang, ZHANG Yin. Field balancing of magnetically levitated motor in high-efficiency and high-accuracy[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2884-2892
王英广, 房建成, 郑世强, 张寅. 磁悬浮电机高效高精度在线动平衡[J]. 光学精密工程, 2013,21(11): 2884-2892 DOI: 10.3788/OPE.20132111.2884.
WANG Yang-An, FANG Jian-Cheng, ZHENG Shi-Jiang, ZHANG Yin. Field balancing of magnetically levitated motor in high-efficiency and high-accuracy[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2884-2892 DOI: 10.3788/OPE.20132111.2884.
提出了一种基于零位移控制的磁悬浮转子在线动平衡方法,用于降低磁悬浮电机的振动并提高悬浮精度。通过在极坐标系中分析磁悬浮转子的静/动不平衡模型,推导出校正质量与磁悬浮系统参数的关系。对各种控制模式下表征校正质量的特点进行分析得出:在零位移模式下,电磁力与不平衡离心力相互抵消,且电磁力是控制电流的线性函数,因此可使用控制电流直接解算校正质量。使用广义选频器控制转子绕其几何轴旋转,获得零位移状态,提取了绕组同频控制电流解算校正质量。最后,针对电流刚度获知误差,在线校正转换系数阵,进行二次高精度平衡。实验结果表明,使用本方法一次启车即可确定校正质量,两次启车校正转换系数阵再次平衡后,转子振动降低98.6%
控制电流降低98.7%,实现了高效高精度动平衡,达到了磁悬浮转子零位移零电流运行状态。
A new balancing method based on zero-displacement control for a Magnetically Levitated Rotor (MLR)was proposed to reduce the vibration and to improve the levitation performance of the magnetically Levitated motor (MLM). First
the static/dynamic unbalance models of MLR were discussed in polar coordinates
and the relationship between MLR parameters and correction-masses was derived. After analyzing the characteristics of the above relationships in different control modes
a conclusion was obtained as follows: the correction-masses can be solved from the control current directly in zero-displacement mode
as the electromagnetic force is a linear function of the control current and can be offset by unbalanced centrifugal force. Then
a general frequency selector was utilized to control the rotor to spin around its geometric axis to achieve the zero-displacement mode and the synchronous control currents were extracted to compute the correction-masses. Finally
based on the current stiffness learning errors
the second balancing was completed in high-accuracy by correcting conversion coefficient matrix on line. The experimental results show that the correction-masses can be obtained through a single start-up
and the rotor vibration and control current have reduced by 98.6% and by 98.7% respectively after the second balancing using the corrected conversion-coefficient-matrix. The status of zero-displacement and zero-current are achieved after the field balancing with high-efficiency and high-accuracy.
刘强,房建成. 磁悬浮飞轮用可重复抱式锁紧装置[J].光学 精密工程,2012, 20(8):1802-1810.LIU Q, FANG J CH. Repeated clamping locking device for magnetic bearing flywheel [J]. Opt. Precision Eng., 2012, 20(8): 1802-1810. (in Chinese)[2]ZHENG SH Q, HAN B C. Investigations of an integrated angular velocity measurement and attitude control system for spacecraft using magnetically suspended double-gimbal CMGs[J]. Advances in Space Research, 2013,51(12):2216-2228.[3]WANG Y G, FANG J C, ZHENG S Q. Optimal phase compensation control and experimental study of flexible rotor supported by magnetic bearing [C]. Proceedings of the 8th IEEE international symposium on instrumentation and control technology, LONDON, UK, 2012: 314-319.[4]PANG D C. Magnetic bearing system design for enhanced stability \[D\]. University of Maryland, 1994: 224-227.[5]ZHANG SH W, GU ZH H, ZHANG ZH J. Dynamic balancing method for the single-threaded, fixed-pitch screw rotor [J]. Vacuum, 2013, 90: 44-49.[6]ZHANG K, ZHANG X ZH. Rotor dynamic balance making use of adaptive unbalance control of active magnetic bearings \[C\]. Proceedings of 2010 International Conference on Intelligent System Design and Engineering Application, Changsha, China, 2010: 347-350.[7]JIANG K J, ZHU CH SH, TANG M. A uniform control method for imbalance compensation and automation balancing in active magnetic bearing-rotor systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2012,134:021006-1-13.[8]刘彬,房建成,刘刚. 基于TMS320C6713B+FPGA数字控制器实现磁悬浮飞轮主动振动控制[J].光学 精密工程,2009, 17(1):151-157.LIU B, FANG J CH, LIU G. Implementation of active vibration control for magnetically suspended flywheels based on TMS320C6713B+ FPGA digital controller [J]. Opt. Precision Eng., 2009, 17(1): 151-157. (in Chinese)[9]韩邦成,崔华,汤恩琼. 基于滑模扰动观测器的磁轴承主动振动控制[J]. 光学 精密工程,2012, 20(3):563-570.HAN B CH, CUI H, TANG E Q. Vibration suppression of magnetic bearing based on sliding mode disturbance observer [J]. Opt. Precision Eng., 2012, 20(3): 563-570. (in Chinese)[10]XU X B, FANG J C, WEI T. Stability analysis and imbalance compensation for active magnetic bearing with gyroscopic effects \[C\]. Proceedings of the 8th IEEE international symposium on instrumentation and control technology, LONDON, UK, 2012: 295-300.[11]HERZOG R, PHILIPP B, GAHLER C, et al.. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearing [J]. IEEE Transaction on Control Systems Technology, 1996,4(5): 580-586.[12]SEKHAR A S, SARANGI D. On-line balancing of rotors \[C\]. Proceedings of the 11th National Conference on Machines and Mechanisms, IIT, Delhi, 2003: 437-443.[13]CHEN X Q, JIA Y J, CHENG G Z. Research on field balancing of rotor [J]. Applied Mechanic and Materials, 2012, 201(202): 83-86.[14]张禄林,段滋华,李多民,等. 现场动平衡技术的研究进展[J]. 化工机械,2012,39(6):690-694.ZHANG L L, DUAN Z H, LI D M, et al.. Research progress of field balancing Technology [J]. Chemical Engineering & Machinery, 2012, 39(6): 690-694. (in Chinese)[15]郭隐彪,郑琳,王振忠. 高精度非球面加工双轴动平衡监控技术研究[J]. 光学 精密工程,2006,14(3):434-438.GUO Y B, ZHENG L, WANG ZH ZH. Study on single-plane biaxial balance monitor system in ultra-precision aspheric grinding [J]. Opt. Precision Eng., 2006, 14(3): 434-438. (in Chinese)[16]LI H W, XU Y, GU H D, et al.. Field dynamic balance method study for the AMB-flexible rotor system \[C\]. Transactions of the 19th International Conference on Structural Mechanics on Reactor Technology, Toronto, Canada, 2007:1-7.[17]韩辅君,房建成. 磁悬浮飞轮转子系统的现场动平衡方法[J]. 航空学报, 2010, 31(1):184-190.HAN F J, FANG J CH. Field balancing method for rotor system of a magnetic suspending flywheel [J]. ACTA Aeronautical et Astronautic Sinica, 2010, 31(1): 184-190. (in Chinese)[18]BI CH, WU D ZH, JIANG Q, et al.. Automatic learning control for unbalance compensation in active magnetic bearings [J]. IEEE Transactions on Magnetic, 2005, 41(7): 2270-2280.[19]TUNG P CH, TSAI M T, CHEN K Y, et al.. Design of model-based unbalance compensator with fuzzy gain tuning mechanism for an active magneic bearing system [J]. Expert Systems with Applications, 2011, 38: 12861-12868.[20]JIANG K J, ZHU CH S, TANG M. A uniform control method for imbalance compensation and automation balancing in active magnetic bearing-rotor systems [J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134: 021006-1-13.
0
浏览量
144
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构