浏览全部资源
扫码关注微信
武汉大学 电子信息学院,湖北 武汉 430079
收稿日期:2013-05-09,
修回日期:2013-07-02,
网络出版日期:2013-11-22,
纸质出版日期:2013-11-15
移动端阅览
黄炎, 颜佳, 张虎, 邓德祥. 多部位集合的人体检测[J]. 光学精密工程, 2013,21(11): 2906-2913
HUANG Tan, YA Jia, ZHANG Hu, DENG De-Xiang. Poselets for Pedestrian Detection[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2906-2913
黄炎, 颜佳, 张虎, 邓德祥. 多部位集合的人体检测[J]. 光学精密工程, 2013,21(11): 2906-2913 DOI: 10.3788/OPE.20132111.2906.
HUANG Tan, YA Jia, ZHANG Hu, DENG De-Xiang. Poselets for Pedestrian Detection[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2906-2913 DOI: 10.3788/OPE.20132111.2906.
采用启发式、有监督的部位筛选方法组成了一种多部位集合的检测模型,用于缓解遮挡和形变对人体检测造成的影响。该模型通过比较人体同部位上关节点间的Procrustes距离,在训练集中获取有着相似姿态的同部位样本;将梯度方向直方图(HOG)作为特征,由典型部位分别训练出判别模型;比较其在验证集上的检测效果,从中筛选出检测率高的部位和未检出的图片,再寻找对未检出图片检测率高的部位,由这些部位组成混合模型。用混合模型检测时,由Kullback-Leibler距离判断各部位在图片上的不同响应是否属于同一人,以此来确定人体的外接矩形框。在INRIA人体库上的测试表明,本文采用的模型在误检率(FPPI)为0.5时有81%的检测率,高于有77%检测率的Poselets算法。本文基于Poselets,结合HOG的特点采用了一套有监督的部位筛选机制,使得模型成员数大幅度减少,检测时间比原始方法下降了50%,同时取得了优于Poselets的检测效果。
A part-based mixture model(Poselets) was ultilized to alleviate the problem of pedestrian detection under occlusion and articulation. Firstly
Procrustes distances between similar pedestrian parts were calculated to gather training exmaples with the same configurations. Then
common parts of frontal pedestrian described by Histogram of Oriented Gradient(HOG) were trained to get discriminative models. A test was carried out on a validation set to find out which parts were more accurate
and those pictures which were not detected formed the hard set.Other complementary parts were explored on the hard set
afterwards
all these parts formed the final Poselets detector. While detecting
Poselets were clusterd if the symmetrized KL-divergence between two Poselet activations were small. The bounding box of a pedestrian was inferred by the bounding boxes of the Poselets in a cluster. Based on the test of the INRIA pedestrian dataset
it is showed that the detection rate increases from 77% of Poselets to 81% in this paper while False Positive Per Image(FPPI) is 0.5. It is concluded that the part selection mechanism proposed in this paper promotes the detection rate with speedup rate about twice of the traditional method
meanwhile it reduces the number of models.
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C].International Conference on Computer Vision & Pattern Recognition, 2005,1:886-893.[2]MIKOLAJCZYK K, SCHMID C, ZISSERMAN A. Human detection based on a probabilistic assembly of robust part detectors [C].European Conference on Computer Vision(ECCV04), 2004, 3021:69-82.[3]LIN Z, DAVIS L S. A pose-invariant descriptor for human detection and segmentation[C]. European Conference on Computer Vision, 2008,5305,423-436.[4]ANDRILUKA M, ROTH S SCHIELE B.Discriminative appearance models for pictorial structures[J]. International Journal of Computer Vision,2012, 99(3):259-280.[5]DOLLAR P, BABENKO B, BELONGIE S, et al.. Multiple component learning for object detection[C].Computer Vision-ECCV 2008, 2008,5303:211-224.[6]FELZENSZWALB P F,GIRSHICK R B,MCALLESTER D.Cascade object detection with deformable part models [C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2010:2241-2248.[7]BOURDEV L,MAJI S, BROX T, et al.. Detecting people using mutually consistent poselet activations[C].Computer Vision-EECV 2010, 2010,6316:168-181.[8]EVERINGHAM M, VAN G L, WILLIAMS, et al..The PASCAL Visual Object Classes (VOC) Challenge [J].International Journal of Computer Vision, 2010,88(2), 303-338.[9]BOURDEV L, MALIK J. Poselets: Body part detectors trained using 3D human pose annotations[C]. 2009 IEEE 12th International Conference on Computer Vision,2009: 1365-1372.[10]BOURDEV L.Poselets and their applications in high-Level computer vision[D]. California:Computer Science Graduate Division of the University of California Berkeley,2011.[11]DALAL N.Finding people in images and videos[D].France:the French National Institute for Research in Computer Science and Control,2006.[12]黄炎,范赐恩,朱秋平,等.联合梯度直方图和局部二值模式特征的人体检测[J].光学 精密工程,2013,21 (4):1047-1053.HUANG Y, FAN C E, ZHU Q P, el at.. HOG-LBP pedestrian detection[J]. Opt. Precision Eng., 2013, 21(4): 1047-1053. (in Chinese)
0
浏览量
254
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构