浏览全部资源
扫码关注微信
东南大学 机械工程学院,江苏 南京 211189
收稿日期:2013-01-14,
修回日期:2013-03-28,
网络出版日期:2013-11-22,
纸质出版日期:2013-11-15
移动端阅览
韩延祥, 张志胜, 郝飞, 陈平. 灰度序列图像中基于纹理特征的移动阴影检测[J]. 光学精密工程, 2013,21(11): 2931-2942
HAN Yan-Xiang, ZHANG Zhi-Qing, HAO Fei, CHEN Beng. Shadow detection based on texture feature in gray sequence images[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2931-2942
韩延祥, 张志胜, 郝飞, 陈平. 灰度序列图像中基于纹理特征的移动阴影检测[J]. 光学精密工程, 2013,21(11): 2931-2942 DOI: 10.3788/OPE.20132111.2931.
HAN Yan-Xiang, ZHANG Zhi-Qing, HAO Fei, CHEN Beng. Shadow detection based on texture feature in gray sequence images[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2931-2942 DOI: 10.3788/OPE.20132111.2931.
实施移动目标检测时,由于移动阴影与运动目标具有相似的运动特性,常严重影响检测结果。本文假设视频序列中当前图像的阴影区域与对应的背景部分有相同的纹理特征,提出一种新的基于纹理特征的移动阴影检测方法。为了实现纹理特征的表达,在阴影检测过程中提出了几种纹理相似度测量方法,并通过计算当前图像与背景图像的纹理相似度值来区分当前图像中阴影区域和前景目标。另外,基于Ostu算法(大津算法)提出了一种自适应的阴影分割方法,并分别对室内和室外环境下采集的视频进行了阴影检测。定性和定量分析表明,在具有显著纹理结构的视频序列下,所提出的方法对于阴影检测有很好的效果,而对于图像模糊并伴有噪声的图像检测精度会有所降低。
Moving object detection is usually effected by moving shadows from the object and it is easy to produce serious problems because the object and the shadow have the same moving characteristic. This paper proposes a method for moving shadow detection based on texture feature under the assumption that shadow regions in the current image have the same texture feature with a corresponding background image. For the discrimination between shadows and foregrounds
several texture similarity measurements are used and the shadows and foregrounds in current image are distinguished by computing the similarity of current image and background image. Furthermore
an adaptive method for segmentation of shadows and foregrounds is presented based on Ostu algorithm. In the end
experiments are carried on the video extracted from indoor or outdoor environments. Analysis indicates that the method has a excellent detection result in a video sequence with outstanding texture features. However
detection accuracy will be reduced when the image suffers blurring or noising. The obtained results verify the efficiency of the proposed method by using both of subjective evaluation and objective evaluation.
丁雪梅, 王维雅, 黄向东. 基于差分和特征不变量的运动目标检测与跟踪 [J]. 光学 精密工程, 2007,15(4): 570-576.DING X M, WANG W Y, HUANG X D. New method for detecting and tracking of moving target based on difference and invariant[J]. Opt. Precision Eng., 2007,15(4): 570-576. (in Chinese)[2]吴君钦,刘昊,罗勇. 静态背景下的运动目标检测算法[J].液晶与显示, 2012, 27(5): 682-686.WU J Q, LIU H, LUO Y. Algorithm of moving object detection in static background[J]. Chinese Journal of Liquid Crystals and Displays, 2012,27(6): 682-686. (in Chinese)[3]李英,李静宇,徐正平. 结合SURF与聚类分析方法实现运动目标的快速跟踪[J]. 液晶与显示, 2011,26(4): 544-550.LI Y, LI J Y, XU ZH P. Moving target fast tracking using SURF and cluster analysis method[J]. Chinese Journal of Liquid Crystals and Displays, 2011,26(4): 544-550. (in Chinese)[4]吕国亮, 赵曙光, 赵俊. 基于三帧差分和连通性检验的图像运动目标检测新方法[J]. 液晶与显示, 2007,22(1): 87-92.LV G L, ZHAO SH G, ZHAO J. Novel method of moving object detection based on three frame difference and connectivity checking [J]. Chinese Journal of Liquid Crystals and Displays, 2007,22(1): 87-92. (in Chinese)[5]HSIEH J W, HU W F, CHANG C J, et al.. Shadow elimination for effective moving object detection by Gaussian shadow modeling [J]. Image and Vision Computing, 2003, 21(6): 505-516.[6]WANG Y. Real-time moving vehicle detection with cast shadow removal in video based on conditional random field [J]. IEEE Transactions on Circuits Systems for Video Technology, 2009, 19(3): 437-441.[7]FANG L Z, QIONG W Y, SHEND Y Z. A method to segment moving vehicle cast shadow based on wavelet transform [J]. Pattern Recognition Letters, 2008, 29(16): 2182-2188.[8]STAUDER J, MECH R, OSTERMANN J. Detection of moving cast shadows for object segmentation [J]. IEEE Transactions on Multimedia, 1999,1(1): 65-76.[9]XU D, LI X L, LIU Z K, et al.. Cast shadow detection in video segmentation [J]. Pattern Recognition Letters, 2005,26(1): 91-99.[10]XU D, LIU J Z, LI X L, et al.. Insignificant shadow detection for video segmentation [J]. IEEE Transactions on Circuits System Video Technology, 2005, 15(8): 1058-1064.[11]LI Z, JIANG P H, MA H, et al.. A model for dynamic object segmentation with kernel density estimation based on gradient features [J]. Image and Vision Computing, 2009, 27(6): 817-823.[12]CUCCHIARA R, GRANA C, PICCARDI M, et al.. Improving shadow suppression in moving object detection with HSV color information [C]. 2001 IEEE Intelligent Transportation Systems - Proceedings, 2001, 334-339.[13]CUCCHIARA R, GRANA C, PICCARDI M, et al.. Detecting moving objects, ghosts, and shadows in video streams [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(10): 1337-1342.[14]SALVADOR E, CAVALLARO A, EBRAHIMI T. Cast shadow segmentation using invariant color features [J]. Computer Vision and Image Understanding, 2004,95(2): 238-259.[15]WANG Y, TAN T, LOE K F, et al.. A probabilistic approach for foreground and shadow segmentation in monocular image sequences [J]. Pattern Recognition, 2005,38(11): 1937-1946.[16]JUNG C R. Efficient background subtraction and shadow removal for monochromatic video sequences [J]. IEEE Transactions on Multimedia, 2009,11(3): 571-577.[17]LEONE A, DISTANTE C. Shadow detection for moving objects based on texture analysis [J]. Pattern Recognition, 2007,40(4): 1222-1233.[18]TIAN Y L, LU M, HAMPAPUR A. Robust and efficient foreground analysis for real-time video surveillance [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,1: 1182-1187.[19]陈晓钟, 孙华燕. 一种自然纹理背景下的图像目标检测方法[J]. 光学 精密工程, 2000,8(5):421-424.CHEN X ZH, SUN H Y. Targets detection method for image under nature texture background [J]. Opt. Precision Eng., 2000,8(5): 421-424. (in Chinese)[20]姜永林, 屈桢深, 王常虹. 基于纹理及统计特征的视频背景提取[J]. 光学 精密工程, 2008,16(1): 172-177.JIANG Y L, QU ZH SH, WANG CH H. Video background extraction based on textural and statistical features[J]. Opt. Precision Eng., 2008,16(1): 172-177. (in Chinese)[21]曹健, 陈红倩, 张凯,等. 结合区域颜色和纹理的运动阴影检测方法[J]. 机器人, 2011,33(5): 628-633.CAO J, CHEN H Q, ZHANG K, et al.. Moving cast shadow detection based on region color and texture [J]. Robot, 2011,33(5): 628-633.(in Chinese)[22]杜友田, 陈峰, 徐文立. 基于区域的运动阴影检测方法[J]. 清华大学学报:自然科学版,2006,46(1): 141-144.DU Y T, CHEN F, XU W L. Region-based moving shadow detection approach [J]. Journal of Tsinghua University:Science & Technology, 2006,46(1): 141-144.(in Chinese)[23]郭利生, 郭立, 焦荣惠,等. 一种基于运动阴影的目标检测算法[J]. 模式识别与人工智能, 2007,20(2): 180-184.GUO L SH, GUO L, JIAO R H, et al.. An object detection algorithm based on moving shadow[J]. Pattern Recognition & Artificial Intelligence, 2007,20(2): 180-184. (in Chinese)[24]查宇飞, 楚瀛, 王勋,等. 一种基于Boosting判别模型的运动阴影检测方法[J]. 计算机学报, 2007,30(8):1295-1301.CHA Y F, CHU Y, WANG X, et al.. A boosting discriminative model for moving cast shadow detection [J]. Chinese Journal of Computers, 2007,30(8):1295-1301.(in Chinese)[25]ROCHE A, MALANDAIN G, PENNEC X, et al.. The correlation ratio as a new similarity measure for multimodal image registration [C]. Medical Image Computing and Computer-Assisted Intervention - Miccai'98, W M Wells, 1998: 1115-1124.[26]STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757.[27]OTSU N. A Threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1): 62-65.[28]PRATI A, MIKIC I, TRIVEDI M M, et al.. Detecting moving shadows: Algorithms and evaluation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(7): 918-923.[29]ZHANG W, FANG X ZH, YANG X K, et al.. Moving cast shadows detection using ratio edge [J]. IEEE Transactions on Multimedia, 2007,9(6): 1202-1214.[30]AMATO A, MOZEROV M G, BAGDANOV A D, et al.. Accurate moving cast shadow suppression based on local color constancy detection [J]. IEEE Transactions on Image Processing, 2011,20(10): 2954-2966.
0
浏览量
246
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构