浏览全部资源
扫码关注微信
解放军信息工程大学 地理空间信息学院,河南 郑州,450052
收稿日期:2013-05-02,
修回日期:2013-06-13,
网络出版日期:2013-11-22,
纸质出版日期:2013-11-15
移动端阅览
耿则勋, 魏小峰, 沈忱. 结合参数估计的天文图像极大似然恢复[J]. 光学精密工程, 2013,21(11): 2943-2950
GENG Ze-Xun, WEI Xiao-Feng, CHEN Chen. Astronomical image restoration basedMaximum-likelihood incorporated parameter estimation[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2943-2950
耿则勋, 魏小峰, 沈忱. 结合参数估计的天文图像极大似然恢复[J]. 光学精密工程, 2013,21(11): 2943-2950 DOI: 10.3788/OPE.20132111.2943.
GENG Ze-Xun, WEI Xiao-Feng, CHEN Chen. Astronomical image restoration basedMaximum-likelihood incorporated parameter estimation[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2943-2950 DOI: 10.3788/OPE.20132111.2943.
分析了Benvenuto等针对天文图像恢复提出的基于极大似然(ML)代价函数的有效逼近模型,由此提出了一种比传统ML收敛更快的图像恢复算法。该算法在未知点扩散函数(PSF)条件下,通过观测模糊图像,自适应估计湍流PSF,使PSF估计更符合成像环境;然后,将该算法与混合高斯泊松噪声的ML算法相结合,形成增强ML迭代算法。在迭代过程中动态更新PSF,交替执行恢复图像、去除噪声等策略。结果显示:对于点源目标图像,本文算法恢复图像的质量在峰值信噪比、均方误差以及平均对比度3个指标上分别提高了96.64%,69.26%和25.6%;对于真实湍流退化图像,恢复质量也有一定改善。结论表明:该方法可以使迭代过程收敛更稳定,图像恢复质量得到明显提高,非常适用于天文观测图像的高清晰恢复与重建。
The effective approximation mode based on Maximum-likelihood (ML) function proposed by Benvenuto was analyzed for astronomy image restoration
then a new image restoration algorithm with convergence faster than that of traditional ML method was proposed. In this algorithm
PSF known a priori was not required. The turbulence PSF was estimated from observed blur images to make the PSF estimation more accordance with an imaging environment. By incorporating adaptive estimation of PSF into ML restoration
an enhanced ML algorithm was presented. Additionally
the PSF was updated successively during iteration
and the ML restoration and denoising were performed alternatively in iteration. The results show that the proposed algorithm works much better than ML does. Taking the point source image for an instance
proposed method improves the image quality by 96.64%,69.26% and 25.6% respectively on the peak signal to noise ratio
mean square error and the correlation coefficient. In conclusion
the algorithm allow the iterative process in ML algorithm to converge stably and the image quality to be improved. Experiment results show that the presented method can be used routinely in astronomical image restoration.
VEGA M,MATEOS J,MOLINA R,et al.. Astronomical image restoration using variationalmethodsand model combination [J].Statistical Methodology,2012,9(1-2): 19-31.[2]AYERS G R, DAINTY J C. Iterative blind deconvolution method and its applications [J]. Optics Letters,1988,13(7):547-549. [3]LANE R,BATESR. Automatic multichannel deconvolution [J]. J.Opt.Soc.Am.,1987, A(4):180-188.[4]ZHULINA Y V. Multiframe blind deconvolution of heavily blurred astronomical images[J]. Applied Optics, 2006, 45(28):7342-7352.[5]KUNDUR D, HATZINAKOS D. A novel blind deconvolution scheme for image restoration using recursive filtering [J]. IEEE Transactions on Signal Processing,1998,46(2):375-390.[6]LIU Z, QIU Y H,LOU R W. Reconstruction of video images through turbulent atmosphere \[C\]. Electronic Imaging and Multimedia System II,SPIE,1998,3561:326-331.[7]王建立,汪宗洋,王斌,等. 相位差异散斑法图像复原技术[J]. 光学 精密工程,2011,19(5):1165-1170.WANG J L, WANG Z Y, WANG B, et al.. Image restoration by phase-diverse speckle [J].Opt.Precision Eng.,2011,19(5):1165-1170.(in Chinese)[8]赵金宇,吴元昊,贾建禄,等. 基于实时波前信息的图像复原[J]. 光学 精密工程,2012,20(6):1350-1356.ZHAO J Y, WU Y H ,JIA J L, et al.. Image restoration based on real time wave-front information [J]. Opt.Precision Eng.,2012,20(6):1350-1356.(in Chinese)[9]耿则勋,王振国. 改进的天文斑点图像高清晰重建方法[J]. 光学 精密工程,2007,15(7):1151-1156.GENG Z X, WANG ZH G.Modified high definition reconstruction algorithm of astronomical speckle images [J]. Opt.Precision Eng.,2007,15(7):1151-1156.(in Chinese)[10]LlACER J, NUNEZ J. Iterative Maximum Likelihood and Bayesian Algorithm for Image Reconstruction in Astronomy \[M\]. Baltimore:The Space Telescope Science Institute,1990.[11]KATSAGGELOS A K, LAY K T. Maximum likelihood blur identification and image restoration using the EM algorithm[J]. IEEE Transactions on Signal Processing, 1991, 39(3):729-733.[12]SNYDER D L,HAMMOUD A M, WHITE R L. Image recovery from data acquired with a charge-coupled device camera [J]. Journal of the Optical Society of America A, 1993,10(5): 1014-23.[13]BENVENUTO F,CAMERA A L,THEYS C, et al.. The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise [J].Inverse Problems, 2008,24(3):1-20.[14]魏小峰,耿则勋,宋向,等.基于泊松-高斯混合噪声的改进最大似然算法[J].计算机工程,2012,38(1): 222-224.WEI X F, GENG Z X, SONG X, et al.. A modified maximum-likelihood algorithm based on the Poisson-Gaussian mixed noise [J]. Computer Engineering,2012,38(1): 222-224.(in Chinese)[15]ZHANG H, GE Q, LI L,et al.. A new point spread function estimation approach for recovery of atmospheric turbulence degraded photographs\[C\]. Proceedings of 4th International Congress on Image and Signal Processing, Shanghai, IEEE, 2011:774-778.[16]AUBERT G, VESE A. A variational method in image recovery [J]. SIAM Journal on Numerical Analysis, 1997, 34(5):1948-1979.
0
浏览量
177
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构