浏览全部资源
扫码关注微信
北京师范大学 信息科学与技术学院 北京,100875
收稿日期:2013-02-25,
修回日期:2013-06-02,
网络出版日期:2013-11-22,
纸质出版日期:2013-11-15
移动端阅览
余先川, 吕中华, 胡丹. 遥感图像配准技术综述[J]. 光学精密工程, 2013,21(11): 2960-2972
TU Xian-Chuan, LV Zhong-Hua, HU Dan. Review of remote sensing image registration techniques[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2960-2972
余先川, 吕中华, 胡丹. 遥感图像配准技术综述[J]. 光学精密工程, 2013,21(11): 2960-2972 DOI: 10.3788/OPE.20132111.2960.
TU Xian-Chuan, LV Zhong-Hua, HU Dan. Review of remote sensing image registration techniques[J]. Editorial Office of Optics and Precision Engineering, 2013,21(11): 2960-2972 DOI: 10.3788/OPE.20132111.2960.
遥感图像配准是图像融合、多光谱分类、环境监测和图像镶嵌等不可缺少的步骤。本文讨论了遥感图像领域中重要的和最新的配准算法,将配准方法划分为基于区域的配准、基于图像特征的配准、基于混合模型的配准和基于物理模型的配准四类;描述了四类配准方法中的典型算法,并分析了它们的优势和不足,重点概述了基于特征配准中的局部不变特征变换算法。评述了国内外遥感图像配准的发展现状;指出了遥感图像配准技术中存在的问题,即多源遥感图像的配准、遥感图像配准的实时性、遥感图像的非线性配准和遥感图像配准的精度评价,最后展望了遥感图像配准技术的发展前景。
Remote sensing image registration is an indispensable part for remote sensing image fusion
multispectral classification
environmental monitoring
image mosaicing and so on. In this paper
the important and latest registration methods for remote sensing are discussed and are divided into four types
including area-based methods
feature-based methods
hybrid-based model methods and physically-based model methods. Then
the classic algorithms of each type are analyzed respectively
and their advantages and shortcomings are also stated. The scale invariant feature transform algorithms are mainly discussed. Furthermore
the difficulties of remote sensing image registration techniques are summarized
including the multi-source remote sensing image registration
the real-time registration of remote sensing image
the nonlinear registration of remote sensing image and the accuracy evaluation of remote sensing image registration. Finally
the prospects of image registration are pointed out.
BROWN L G. A survey of image registration techniques [J]. ACM Computing Surveys, 1992, 24(4):325-376.[2]ZITOVA B, FLUSSER J. Image registration methods: a survey [J]. Image and Vision Computing, 2003, 21(11):977-1000.[3]GOSHTASBY A. 2-D and 3-D Image Registration for Medical, Remote Sensing, and Industrial Applications \[M\]. Hoboken:Wiley-Interscience Publication,2005.[4]MARTINEZ A, GARCIA-CONSUEGRA J, ABAD F. A correlation-symbolic approach to automatic remotely sensed image rectification[C]. Proceedings of IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany: IGARSS, 1999: 336-338. [5]JOHNSON K, COLE-RHODES A, ZAVORIN I, et al.. Mutual information as a similarity measure for remote sensing image registration [J]. SPIE Proeedings, 2001, 4383:51-61.[6]LI W, LEUNG H. A maximum likelihood approach for image registration using control point and intensity [J]. IEEE Transactions on Image Processing, 2004, 13(8):1115-1127. [7]BAMEA D I, SILVERMAN H F. A class of algorithms for fast digital image registration [J]. IEEE Transactions on Computers,1972,21(2):179-186. [8]ANUTA P E. Spatial registration of multispectral and multi-temporal digital imagery using fast fourier transfor techniques [J]. IEEE Transactions on Geoscience Electronics, 1970, 8(4):355-368. [9]REDDY B S, CHATTERJI B N. An FFT-based technique for translation, rotation, and scale-invariant image registration [J]. IEEE Transactions on Image Processing, 1996, 5(8): 1266-1271.[10]CHEN H, VARSHNEY P, ARORA M. Performance of mutual information similarity measure for registration of multitemporal remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(11):2445-2454.[11]GHORBANI H , BEHESHTI A A. Multiresolution registration of multitemporal remote sensing images by optimization of mutual information using a simulated annealing based Marquardt-Levenberg technique [C]. Proceedings of 2007 International Conference on Intelligent & Advanced Systems, Malaysia, Kuala Lumpur: ICIAS, 2007:685-690. [12]DAME A, MARCHAND E. Second-order optimization of mutual information for real-time image registration [J]. IEEE Transactions on Image Processing, 2012, 21(9):4190-4203.[13]ROCHE A, MALANDAIN G, AYACHE N. Unifying maximum likelihood approaches in medical image registration [J]. International Journal of Imaging Systems and Technology, Special Issue on three Dimensional Imaging, 2000,11(1): 71-80.[14]XU M, VARSHNEY P K. A subspace method for fourier-based image registration [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3):491-494.[15]TZIMIROPOULOS G, ARGYRIOU V, ZAFEIRIOU S, et al.. Robust FFT-based Scale-Invariant Image registration with image gradients [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10): 1899-1906.[16]THANGAVEL P, KOKILA R. An extension of FFT based image registration [J]. Advances in Intelligent Systems and Computing, 2013, 177(2): 729-737.[17]MORAVEC H P. Towards automatic visual obstacle avoidance \[C\]. Proceedings of 5th International Joint Conference on Artificial Intelligence, MA, USA,IJCAI, 1977, 2:584-584.[18]HARRIS C, STEPHENS M. A combined corner and edge detection\[C\].Proceedings of the 4th Alvey Vision Conference, Manchester, UK: AVC, 1988,147-151. [19]易盟,郭宝龙,严春满. 结合优化梯度滤波与投影不变的航拍视频配准[J]. 光学 精密工程,2012, 20(3): 651-660.YI M, GUO B L, YAN CH M. Aerial video registration combining optimal gradient filters and projective invariant[J]. Opt. Precision Eng., 2012, 20(3):651-660. (in Chinese)[20]SMITH S M, BRADY J M. SUSAN: A new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 23(1):45-78.[21]MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors [J]. International Journal of Computer Vision, 2004, 60(1): 63-86. [22]LOWE D G. Object recognition from local scale-invariant features \[C\]. Proceedings of the 7th International Conference on Computer Vision, Corfu, Greece: ICCV, 1999, 2:1150-1157.[23]LOWE D G. Distinctive image features from scale-invariant keypoints [J].International Journal of Computer Vision, 2004, 60(2): 91-110.[24]BAYA H, ESSA A, TUYTELAARSB T, et al.. Speeded-Up Robust Features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.[25]KE Y, SUKTHANKAR R. PCA-SIFT: A more distinctive representation for local image descriptors \[C\]. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Washington DC, USA: CVPR, 2004, 2:506-513.[26]DUAN C, MENG X, TU C, et al.. How to make local image features more efficient and distinctive [J]. IET Computer Vision, 2008, 2:178-189. [27]LIU X Z, TIAN ZH, LENG CH C, et al.. Remote sensing image registration based on KICA-SIFT descriptors [C]. Proceedings of Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, R.P.China: FSKD, 2010, 1:278-282. [28]MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1615-1630. [29]MOREL J M, YU G S. ASIFT: a new framework for fully affine invariant image comparison [J]. Society for Industrial and Applied Mathematics Journal on Image Sciences, 2009, 2(2): 438-469.[30]SEDAGHAT A, MOKHTARZADE M, EBADI H. Uniform robust scale-invariant feature matching for optical remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4516-4527. [31]BU F, QIU Y H, LIU J, et al.. Improved bidirectional image registration based on Radon-SIFT [J]. Journal of Computational Information Systems, 2012,8(12): 4997-5004.[32]LIU R H, WANG Y G. SAR image matching based on speeded up robust feature [C]. Proceedings of the 2009 WRI Global Congress on Intelligent Systems, Xiamen, R.P. China: GCIS, 2009, 4:518-522.[33]CHEN L, LIU J, CAO L. Image matching by affine speed-up robust features [J]. SPIE, 2011, 8004: 80040G-80040G-5.[34]ZHANG N. Computing parallel speeded-up robust features (P-SURF) via POSIX threads[C]. Proceedings of 5th International Conference on Intelligent Computing, Ulsan, South Korea: ICIC, 2009, 5754:287-296. [35]CHEUNG W, HAMARNEH G. N-SIFT: N-dimensional scale invariant feature transform [J].IEEE Transactions on Image Processing, 2009, 18(9):2012-2021. [36]刘向增, 田铮, 史振广,等.基于FKICA-SIFT特征的合成孔径图像多尺度配准[J]. 光学 精密工程, 2011, 19(9):2186-2195.LIU X Z,TIAN ZH,SHI ZH G, et al.. SAR image multi-scale registration based on FKICA-SIFT features [J]. Opt. Precision Eng., 2011, 19(9): 2186-2195. (in Chinese)[37]ZIOU D, TABBONE S. Edge detection techniques-an overview [J]. International Journal of Pattern Recognition and Image Analysis, 1998, 8: 537-559. [38]LI H, MANJUNATH B S, MITRA S K. A contour-based approach to multisensor image registration [J]. IEEE Transactions on Image Processing, 1995, 4(3): 320-334.[39]TEO T A, CHEN S Y. Feature-based image registration of ALOS PALSAR and AVNIR-2 images[C]. Proceedings of IEEE International Geoscience and Remote Sensing Symposium,Vancouver,Canada: IGARSS, 2011, 566-569. [40]苏娟, 林行刚, 刘代志. 一种基于结构特征边缘的多传感器图像配准方法[J].自动化学报, 2009, 35(3):251-257. SU J, LIN X G, LIU D ZH. A multi-sensor image registration algorithm based on structure feature edges [J]. Acta Automatica Sinica, 2009, 35(3):251-257. (in Chinese)[41]PAL N R, PAL S K. A review on image segmentation techniques [J]. Pattern Recognition, 1993, 26(9):1277-1294. [42]GOSHTASBY A, STOCKMAN G C, PAGE C V. A region-based approach to digital image registration with subpixel accuracy [J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(3): 390-399. [43]ZHANG D R, YU L, CAI ZH G. Automatic registration for ASAR and TM images based on region features [J]. SPIE, 2007, 6752: 75240.[44]CAO X Y, SHAO X X, LI X Y, et al.. Research on the image registration algorithm based on regional feature [C]. Proceedings of 2011 International Conference on Electric and Electronics, Nanchang, R.P. China: EEIC, 2011, 100: 795-801.[45]张宝尚, 田铮, 延伟东. 基于分割区域的SAR图像配准方法研究[J].工程数学学报, 2011, 28(1):7-14. ZHANG B SH, TIAN ZH,YAN W D .An SAR image registration algorithm based on segmentation-derived regions [J]. Chinese Journal of Engineering Mathematics, 2011, 28(1):7-14. (in Chinese)[46]辛亮, 张景雄. 共轭面状特征的快速提取与遥感影像精确配准[J]. 武汉大学学报:信息科学版,2011, 36(6):678-682.XIN L, ZHANG J X. Fast extraction of conjugated area features and accurate registration of remote sensing image [J]. Journal of Wuhan University:Geomatics and Information Science, 2011, 36(6):678-682. (in Chinese)[47]ENRIQUE C, SANTAMARA J, MIRAVET C. Segment-based registration technique for visual-infrared images [J]. Optical Engineering, 2000, 39(1):282-289.[48]康欣, 韩崇昭, 杨艺. 基于结构的SAR图像配准[J]. 系统仿真学报, 2006, 18(5):1307-1310. KANG X, HAN CH ZH, YANG Y. Structure-driven SAR image registration [J]. Journal of System Simulation, 2006, 18(5):1307-1310. (in Chinese)[49]YU L, ZHANG D, HOLDEN E J. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images [J]. Computers & Geosciences, 2008, 34(7):838-848.[50]曹俊, 尹东, 张荣, 等. 基于虚拟点的可见光和SAR图像配准研究[J]. 光电工程, 2009, 36(11):79-84. CAO J, YIN D, ZHANG R, et al.. An optical and SAR image registration algorithm based on virtual points [J]. Opto-Electronic Engineering, 2009, 36(11):79-84. (in Chinese)[51]ALHICHRI H S, KAMEL M. Virtual circles: a new set of features for fast image registration [J]. Pattern Recognition Letters, 2003, 24(5):1181-1190. [52]SEDAGHAT A, MOKHTARZADE M, EBADI H. Uniform robust scale-invariant feature matching for optical remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4516-4527.[53]HONG G, ZHANG Y. Wavelet-based image registration technique for high-resolution remote sensing images [J]. Computers & Geosciences, 2008, 24:1708-1720. [54]凌志刚, 梁彦, 程咏梅, 等. 一种稳健的多源遥感图像特征配准方法[J]. 电子学报, 2010, 38(12):2892-2897.LING ZH G, LIANG Y, CHENG Y M, et al.. A robust multi-source remote-sensing image registration method based on feature matching [J]. Acta Electronica Sinica, 2010, 38(12):2892-2897. (in Chinese)[55]刘向增, 田铮, 温金环, 等. 基于仿射不变SIFT特征的SAR图像配准[J]. 光电工程, 2010, 37(11): 121-127. LIU X Z, TIAN ZH, WEN J H, et al.. SAR image registration based on affine invariant sift features [J]. Opto-Electronic Engineering, 2010, 37(11): 121-127. (in Chinese)[56]LI D, ZHANG Y H. A fast offset estimation approach for InSAR image subpixel registration [J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 267-271.[57]BAJCSY R, LOVACIC S. Multiresolution elastic matching [J]. Computer Vision Graphics and Image Processing, 1989, 46:1-21. [58]CHRISTENSEN G E, RABBITT R D, MILLER M I. Deformable templates using large deformation kinematics [J]. IEEE Transactions on Image Processing, 1996, 5(10):1435-1447.[59]BENCHEMIN S S, BARRON J L. The computation of optical flow [J]. ACM Computing Surveys (CSUR), 1995, 27(3):433-466. [60]李雄飞,张存利,李鸿鹏,等.医学图像配准技术进展[J].计算机科学, 2010, 37(7):27-33.LI X F, ZHANG C L, LI H P, et al.. Development of medical image registration technology [J]. Computer Science, 2010, 37(7):27-33. (in Chinese)[61]王海南,郝重阳,雷方元,等.非刚性医学图像配准研究综述[J]. 计算机工程与应用,2005,41(11):180-184.WANG H N, HAO CH Y, LEI F Y, et al.. A survey of non-rigid medical image registration [J]. Computer Engineering and Applications, 2005,41(11):180-184. (in Chinese)[62]张泽旭, 李金宗, 李冬冬. 基于光流场分析的红外图像自动配准方法研究[J]. 红外与微波毫米学报, 2003, 22(4):307-312. ZHANG Z X, LI J Z, LI D D. Research of automated image registration technique for infrared images based on optical flow field analysis [J]. Journal Infrared Millimeter and Waves, 2003, 22(4):307-312. (in Chinese)[63]LIU J G, YANA H. Phase correlation pixel-to-pixel image co-registration based on optical flow and median shift propagation [J]. International Journal of Remote Sensing, 2008, 29(20):5943-5956.[64]HUANG L, LI Z, ZHANG R. SAR and optical images registration using shape context [C]. Proceedings of 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI: IGARSS, 2010:1007-1010.
0
浏览量
249
下载量
47
CSCD
关联资源
相关文章
相关作者
相关机构