浏览全部资源
扫码关注微信
重庆大学 光电工程学院,重庆 400044
收稿日期:2013-06-18,
修回日期:2013-08-14,
网络出版日期:2013-12-25,
纸质出版日期:2013-12-25
移动端阅览
尚正国, 李东玲, 温志渝, 赵兴强. 硅基氮化铝薄膜风致振动MEMS能量采集单元[J]. 光学精密工程, 2013,21(12): 3058-3065
CHANG Zheng-Guo, LI Dong-Ling, WEN Zhi-Yu, DIAO Xin-Jiang. Flow-induced-vibration MEMS energy harvesting unit based on AlN film in silicon[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3058-3065
尚正国, 李东玲, 温志渝, 赵兴强. 硅基氮化铝薄膜风致振动MEMS能量采集单元[J]. 光学精密工程, 2013,21(12): 3058-3065 DOI: 10.3788/OPE.20132112.3058.
CHANG Zheng-Guo, LI Dong-Ling, WEN Zhi-Yu, DIAO Xin-Jiang. Flow-induced-vibration MEMS energy harvesting unit based on AlN film in silicon[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3058-3065 DOI: 10.3788/OPE.20132112.3058.
研究了基于氮化铝(AlN)薄膜的压电式风致振动微机电系统(MEMS)能量采集单元的制备工艺。采用脉冲直流磁控溅射的方法制备了具有(002)择优取向的AlN压电薄膜
并通过X射线衍射仪(XRD)及扫描电镜(SEM)表征了AlN薄膜的性能。测试结果表明:种子层材料、气体流量比和衬底温度等对AlN薄膜晶体取向及薄膜性能有重要影响。制备的具有(002)择优取向的AlN薄膜的衍射强度达到105count
半高宽为2.7。对硅基AlN风致振动MEMS能量采集单元加工工艺流程进行优化,制备出了风致振动能量采集系统原理样机。风洞实验表明,在15.9 m/s的风载荷作用下,MEMS能量采集单元的最大输出功率为1.6 W。该工艺亦可用于其他硅基AlN薄膜MEMS器件的制备。
A flow-inducedvibration Micro-electronicmechanic System(MEMS) energy harvesting unit based on an Aluminum nitride( AlN) film on the silicon was presented. The AlN film with crystal orientation(002) was prepared by DC pulse magnetron sputtering and its performance was characterized by the X-ray Diffraction(XRD) and the Scanning Electron Microscopy(SEM). The results show that the crystal orientation and performance of the AlN film are depended on the seed layer materials
gas flow ratio and the substrate temperature
its crystal orientation is (002)
and its intensity and Full Width at Half Maximum(FWHM) are 105 counts and 2.7
respectively. The prototype of the flowinducedvibration MEMS energy harvesting unit was presented after optimizing process flow. The wind tunnel experiments show that the maximum power output of the flowinducedvibration MEMS energy harvesting unit is about 1.6 W when the wind speed is 15.9 m/s. The optimization process also can be used to fabricate other MEMS devices based on the AlN film.
[1]ELFRINK R,KAMEL T M, GOEDBIOED M, et al.. Vibration energy harvesting with aluminum nitride-based piezoelectric devices [J]. Journal of Micromechanics and Microengineering, 2009,19(9):4005.[2]VAN S R, ELFRINK R, KAMEL T M, et al.. Piezoelectric AlN energy harvesters for wireless autonomous transducer solutions [C]. IEEE, Sensors,2008:45-48.[3]LEE B C, RAHMAN M A, HYUN S H, et al.. Low frequency driven electromagnetic energy harvester for self-powered system [J]. Smart Materials and Structures, 2012,21(12):5024.[4]贺学锋,杜志刚,赵兴强,等. 悬臂梁式压电振动能采集器的建模及实验验证[J]. 光学 精密工程, 2011,19(8): 1771-1778.HE X F, DU ZH G, ZHAO X Q, et al.. Modeling and experimental verification for cantilevered piezoelectric vibration energy harvester [J]. Opt. Precision Eng.,2011,19(8): 1771-1778. (in Chinese)[5]王淑云, 阚君武, 王鸿云,等. 基于圆弧限位的压电发电装置[J]. 光学 精密工程, 2013,21(2):342-348.WANG SH Y, KAN J W, WANG H Y, et al.. Piezoelectric energy generator based on deflection-limiting circular arc[J]. Opt. Precision Eng., 2013,21(2):342-348. (in Chinese)[6]阚君武, 王淑云, 彭少锋,等. 多振子压电发电机的输出特性[J]. 光学 精密工程, 2011,19(9):2108-2115.KAN J W, WANG SH Y, PENG SH F, et al.. Output perfoemance fo piezoelectric generator with multi-vibrators [J]. Opt. Precision Eng., 2011,19(9):2108-2115. (in Chinese)[7]袁江波, 单小彪, 谢涛,等. 悬臂梁单晶压电发电机的实验[J]. 光学 精密工程, 2009,17(5):1072-1077.YUAN J B, SHAN X B,XIE T, et al.. Experiment of monocrystal piezoelectric generator with cantilever beam structure [J]. Opt. Precision Eng., 2009,17(5):1072-1077. (in Chinese)[8]刘祥建,陈仁文. Rainbow 型压电换能结构的有限元分析与实验[J]. 光学 精密工程, 2011,19(4):789-796.LIU X J, CHEN R W. Finite element analysis and experiments on Rainbow shape piezoelectric energy transferring elements[J]. Opt. Precision Eng., 2011,19(4):789-796. (in Chinese)[9]WANG D A, PHAM H T, CHAO C W , et al.. A piezoelectric energy harvester based on pressure fluctuations in Krmn Vortex Street [C]. Proceedings World Renewable Energy Congress 2011, Linkoping, Sweden: Hydropower Applications, 2011: 1456-1463. [10]GALCHEV T, KIM H, NAHAFI K. Micro power generator for harvesting low-frequency and nonperiodic vibrations[J]. Journal of Microelectromechanical Systems, 2011,20(4):852-866.[11]HE X F,GAO J. Wind energy harvesting based on flow-induced-vibration and impact[J]. Microelectronic Engineering, 2013:82-86.[12]ST C D, BIBO A, SENNAKESAVABABU V, et al.. A scalable concept for micropower generation using flow-induced self-excited oscillations[J]. Applied Physics Letters, 2010,96(14):144103-1-3.[13]KAWAI H. Energy converter, flag type energy converter [R]. Google Patents,2009.[14]ARGENTINA M, MAHADEVAN L. Fluid-flow-induced flutter of a flag[C]. Proceedings of the National Academy of Sciences of the United States of America, America:2005,102(6):1829-1834.[15]PRIYA S. Modeling of electric energy harvesting using piezoelectric windmill [J]. Applied Physics Letters, 2005,87(18):184101-1-3.[16]LIU H C, ZHANG S S, KATHIRESAN R, et al.. Development of piezoelectric microcantilever flow sensor with wind-driven energy harvesting capability [J]. Applied Physics Letters, 2012,100(22):223905-1-3. [17]KNIGHT C, DAVIDSON J, BEHRENS S. Energy options for wireless sensor nodes [J]. Sensors, 2008,8(12):8037-8066.[18]于毅, 任天令, 刘理天.硅基AlN 薄膜制备技术与测试分析[J]. 半导体学报, 2005,26(1):42-45.YU Y, REN T L, LIU L T. Deposition and characterization of AlN thin films on silicon [J]. Chinese Journal of Semiconductors, 2005,26(1):42-45. (in Chinese)[19]SINGH A V, CHANDRA S, BOSE G . Deposition and characterization of c-axis oriented aluminum nitride films by radio frequency magnetron sputtering without external substrate heating [J]. Thin Solid Films, 2011,519(18):5846-5853.[20]CHERNG J,CHEN T,LIN C. Pulsed-DC Sputtering of Molybdenum Bottom Electrode and Piezoelectric Aluminum Nitride Films for Bulk Acoustic ResonatorApplications[J]. Thin Solid Films, 2011,519(20):5846-5853.[21]杨世才, 阿布都艾则孜阿布来, 简基康,等. 纯氮气反应溅射AlN 薄膜及性质研究[J]. 人工晶体学报, 2010,39(1):190-196.YANG SH C, ABDULEZ I Z A, JIAN J K, et al.. Preparation and properties of Al N thin films by pure nitrogen reactive sputtering[J]. Journal of Synthetic Crystals, 2010,39(1):190-196. (in Chinese)[22]TANNER S M, FELMETSGER V V. Microstructure and chemical wet etching characteristics of AlN films deposited by ac reactive magnetron sputtering [J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2010,28(1):69-76.[23]于毅, 赵宏锦, 任天令,等. 硅基 AlN 薄膜的成分与表面分析[J]. 仪器仪表学报,2003,24(z2):278-279.YU Y, ZHAO H J, REN T L, et al.. Component and surface analusis of AlN thin films on silicon[J]. Chinese Journal of Scientific Instrument, 2003,24(z2):278-279. (in Chinese)[24]于毅, 赵宏锦, 任天令,等. AlN薄膜的制备与刻蚀工艺研究[J]. 仪器仪表学报,2003,24(z2):239-240.YU Y, ZHAO H J, REN T L, et al.. Study of fabrication and etching process of AlN thin films[J].Chinese Journal of Scientific Instrument, 2003,24(z2):239-240. (in Chinese)
0
浏览量
185
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构