浏览全部资源
扫码关注微信
上海大学 机械自动化工程系 上海,200072
收稿日期:2013-05-23,
修回日期:2013-07-09,
网络出版日期:2013-12-25,
纸质出版日期:2013-12-25
移动端阅览
王振禄, 沈雪瑾, 陈晓阳. 斜梁型电热微致动器的输出位移计算及实验[J]. 光学精密工程, 2013,21(12): 3080-3086
WANG Zhen-Lu, CHEN Xue-Jin, CHEN Xiao-Yang. Output displacement calculation and experiment for inclined beam-type electrothermal microactuator[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3080-3086
王振禄, 沈雪瑾, 陈晓阳. 斜梁型电热微致动器的输出位移计算及实验[J]. 光学精密工程, 2013,21(12): 3080-3086 DOI: 10.3788/OPE.20132112.3080.
WANG Zhen-Lu, CHEN Xue-Jin, CHEN Xiao-Yang. Output displacement calculation and experiment for inclined beam-type electrothermal microactuator[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3080-3086 DOI: 10.3788/OPE.20132112.3080.
为了计算斜梁型电热微致动器的输出位移,基于电-热分析和热平衡原理建立了电热微致动器的电热耦合稳态传热方程。对热-结构进行了分析,运用力法原理建立了微致动器的位移计算模型。然后
用有限元法和实际测试对比验证了温度分布和输出位移的理论值,得到了一致性很好的结果。最后,分析了微致动器输出位移的保持性和重复性,以及结构参数和工艺对微致动器输出位移的影响。分析表明:斜梁的长宽比和倾角是影响微致动器输出位移的主要参数,工艺对输出位移有影响。实验结果表明:9 V和18 V电压下,微致动器的最大位移分别为0.85 m和2.3 m,与理论计算结果相对误差为2.2%和12.8%,实测值与理论值误差较小,表明本文推导的斜梁型电热微致动器的输出位移计算公式合理,能够为该类微致动器的设计和计算提供理论依据。
To calculate the displacement of an inclined beam-type electrothermal microactuator
a multiphysics coupling model was established based on the electro-thermal and thermo-mechanical analysis. The thermal structure was analyzed
and the output displacement formula was obtained using the force method. For the purpose of proving the accuracy of the model
a comparison was performed. The comparison shows that the theoretical results of temperature profile and output displacement are in agreement well with the results of Finite Element Analysis(FEA) and experimental measurements. Finally
the output displacement repeatability and reproducibility were measured and the main factors influencing the output displacement of the microactuator were analyzed. Obtained results indicate that the ratio of length to width and the angle of the inclined beam are main influence factors on the output displacement and the different MEMS processes have obviously effects on the output displacement of the microactuator. Experimental results also show that the maximal displacement of the microactuator is 0.85 m and 2.3 m under the voltage of 18 V and 9 V
which means the relative errors with the results of theoretical calculation are 2.2% and 12.8% respectively. The above analysis indicates that the theoretic calculation values are coincident well with the measured values and the formulas deduced from the inclined beam-type electrothermal microactuator are logical
which can provide theoretical supports for the design and calculation of electrothermal microactuators.
[1]张然,褚金奎,王海祥,等. 具有三层结构的SU-8胶V形微电热驱动器[J]. 光学 精密工程, 2012, 20(7): 1500-1508. ZHANG R, CHU J K, WANG H X, et al..SU-8 chevron electrothermal micro-actuato with three-layer structurers [J]. Opt. Precision Eng., 2012, 20(7): 1500-1508. (in Chinese)[2]刘英明,徐静,钟少龙,等. 垂直梳齿驱动的大尺寸MOEMS扫描镜[J]. 光学 精密工程, 2013, 21(2): 400-407. LIU Y M, XU J, ZHONG SH L, et al.. Large-scale MOEMS scanning mirror actuated by vertical comb [J]. Opt. Precision Eng., 2013, 21(2): 400-407. (in Chinese) [3]GUAN C H, ZHU Y. An electrothermal microactuator with Z-shaped beams [J]. J. Micromech. Microeng., 2010,20(8):5014-5020.[4]LIN L W, CHIAO M. Electrothermal responses of lineshape microstructures [J]. Sens. Actuators A Phys., 1996, 55(1):35-41.[5]ZHU Y, CORIGLIANO A, ESPINOSA H D. A thermal actuator for nanoscale in situ microscopy testing: design and characterization [J]. J. Micromech. Microeng., 2006,16(2):242-253.[6]WITTFWER J W, BAKER M S, HOWELL L L. Simulation, measurement, and asymmetric buckling of thermal microactuators [J]. Sens. Actuators A Phys., 2006,128(2):395-401.[7]PATOWARI P K, BHARALI A S, NATH M M, et al.. Analysis of a monometallic two arm horizontal thermal actuator for MEMS [C]. In Proceeding of the International Conference on Mechanical and Electronics Engineering, Kyoto, Japan, 1-3 August 2010, 1184-1188.[8]HUANG Q A, LEE N K S. Analysis and design of polysilicon thermal flexure actuator [J]. J. Micromech. Microeng., 1999, 9(1):64-70.[9]YAN D, KHAJEPOUR A,MANSOUR R. Modeling of two-hot-arm horizontal thermal actuator [J]. J. Micromech. Microeng., 2003, 13(2):312-322.[10]KUANG Y, HUANG Q A, LEE N K S. Numerical simulation of a polysilicon thermal flexure actuator [J]. Microsyst. Technol., 2002, 8(1):17-21.[11]刘泽文,田昊,刘冲. 微加热器热传导试验与计算[J]. 光学 精密工程, 2011, 19(3): 612-619. LIU Z W,TIAN H,LIU CH. Experiment and thermal calculation of micro heater [J]. Opt. Precision Eng., 2011, 19(3): 612-619. (in Chinese)[12]黎仁刚,黄庆安,李伟华. 热电耦合微执行器温度分布的节点分析法[J]. 半导体学报, 2005, 26(3): 562-566. LI R G, HUANG Q A, LI W H. A nodal analysis method for temperature distribution of thermo-electrical coupled thermal microactuators [J]. Chinese Journal of Semiconductors, 2005, 26(3):562-566. (in Chinese)[13]ZHANG Y Y, SHEN X J, CHEN X Y. Model of polysilicon electro-thermal micro actuator and research of micro scale effect [J]. Journal of Wuhan University of Technology-Materials Science. 2004, 19(S1): 59-62.[14]张舞杰,杨义禄,李迪,等.自动影像测量系统关键算法[J]. 光学 精密工程. 2007, 15(2): 294-301. ZHANG W J, YANG Y L, LI D, et al.. Key algorithms of automatic image measurement system [J]. Opt. Precision Eng., 2007, 15(2): 294-301. (in Chinese)[15]裴旭,李远玥,侯振兴. 大行程转动柔性铰链性能测试方法及实验[J]. 光学 精密工程, 2013,21(4)927-933.PEI X, LI Y Y, HOU ZH X. Performance measurement and experiment for rotational flexural joint with large-stroke [J]. Opt. Precision Eng., 2013,21(4):927-933. (in Chinese)
0
浏览量
310
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构