浏览全部资源
扫码关注微信
1. 中国计量学院 计量测试工程学院,浙江 杭州,310018
2. 上海市计量测试技术研究院 微米纳米计量实验室 上海,201203
3. 上海交通大学 微纳科学技术研究院微米/纳米加工技术国家重点实验室 上海,200240
收稿日期:2013-04-19,
修回日期:2013-06-25,
网络出版日期:2013-12-25,
纸质出版日期:2013-12-25
移动端阅览
吴俊杰, 李源, 李东升, 卢歆, 何明轩. MEMS电容式三维微触觉测头设计及校准[J]. 光学精密工程, 2013,21(12): 3087-3094
TUN Dun-Jie, LI Yuan, LI Dong-Sheng, LEI Xin, HE Meng-Han. Design and calibration of 3D Micro Tactile Probe based on MEMS Capacitance Sensor[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3087-3094
吴俊杰, 李源, 李东升, 卢歆, 何明轩. MEMS电容式三维微触觉测头设计及校准[J]. 光学精密工程, 2013,21(12): 3087-3094 DOI: 10.3788/OPE.20132112.3087.
TUN Dun-Jie, LI Yuan, LI Dong-Sheng, LEI Xin, HE Meng-Han. Design and calibration of 3D Micro Tactile Probe based on MEMS Capacitance Sensor[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3087-3094 DOI: 10.3788/OPE.20132112.3087.
由于微纳米几何量计量很难以三维方式高精度地测量较大尺寸的器件,本文基于非硅MEMS工艺,开发了一种可用于微纳米尺度三维尺寸测量的电容式微触觉测头。利用电容频率测量法实现了微弱电容信号的采集。采用宏微结合驱动方式,设计了运动范围为25 mm25 mm10 mm,单轴12 m范围内定位精度达1 nm的三维微位移平台。最后,对测头的测量范围、线性、迟滞及分辨力进行了测试。结果表明,测头的轴向测量范围为4.5 m,横向测量范围大于5 m,轴向分辨力优于10 nm,横向分辨力优于25 nm,线性较好。开发的测头结构简单、分辨力高、体积小、成本低,可集成到纳米测量定位平台(NMM),完成具有大范围、亚微米或纳米级精度要求的测量任务。
It is difficult to measure large size components in higher precision and a 3D mode in the micro-nano geometrical measurement. Therefore
a high resolution
small sized capacitance sensor was fabricated based on non-silicon Micro-electronic-mechanical system(MEMS) technology. By designing the packaging and weak-capacitance acquisition system of the sensor
a capacitance-based micro tactile probe was developed to measure the 3D dimensions in micro/nano scale. Then
a 3D micro displacement platform was designed to test and calibrate the probe. The macro-micro combination drive mode was used to design the stage and its moving range is 25 mm25 mm10 mm and the uniaxial resolution in 12 m range is 1 nm. Finally
the range
linearity
hysteresis and resolution of the probe were tested. Results show that the axial range is 4.5 m
the lateral range is greater than 5 m
the axial resolution and the lateral resolution of the probe are less than 10 nm and 25 nm
respectively. The experiments show that the probe has a good linearity and its advantages are simple structure
high resolution
small volume and low costs. The probe developed can be integrated to the nano measuring and positioning machine (NMM) to complete required measurement tasks in large ranges and sub-micrometer or nanometer level accuracy.
[1]MANSKE E,JGER G,HAUSOTTE, et al.. Recent developments and challenges of nanopositioning and nanomeasuring technology[J]. Meas. Sci. Technol., 2012, 23(7): 1-10.[2]PETZ M,TUTSCH R,CHRISTOPH R, et al.. Tactile-optical probes for three-dimensional microparts [J]. Measurement, 2012, 45(10): 2288-2298.[3]CLAVERLEY J D,LEACH R K. Development of a three-dimensional vibrating tactile probe for miniature CMMs[J]. Precision Engineering, 2013, 37(2):491-499.[4]TIWANA M I, REDMOND S J,LOVELL N H, et al.. A review of tactile sensing technologies with applications in biomedical engineering [J]. Sensors and Actuators A: Physical, 2012, 179:17-31.[5]PEGGS G N,LEWIS A J,OLDFIELD S. Design for a compact high-accuracy CMM [J]. CIRP Annals - Manufacturing Technology, 1999, 1(48): 417-420.[6]CLAVERLEY J D,LEACH R K. A vibrating micro-scale CMM probe for measuring high aspect ratio structures [J]. Microsystem Technologies, 2010, 8-9(16):1507-1512.[7]BTEFISCH S,BTTGENBACH S,KLEINEBE-STEN T, et al.. Micromechanical three-axial tactile force sensor for micromaterial characterisation [J]. Microsystem Technologies, 2001, 4(7): 171-174.[8]MELI F,FRACHEBOUD M,BOTTINELLI S, et al.. High precision, low force 3D touch probe for measurements on small objects [C]. Proc. of EUSPEN, Aachen, 2003. [9]PRIL W O. Development of high precision mechanical probes for coordinate measuring machines[D]. Eindhoven: Technische Universiteit Eindhoven, 2002.[10]BOS E J C. Tactile 3D probing system for measuring MEMS with nanometer uncertainty[D]. Eindhoven: Graduate University of the Technische Universiteit Eindhoven, 2008. [11]郑银涛. 基于平板式电容的微位移测量系统设计[D]. 大连:大连理工大学, 2010. ZHENG Y T. Design of micro displacement measuring system based on flat plate capcitance[D]. Dalian: Graduate University of the Dalian University of Technology, 2010.(in Chinese)[12]GIRO P S,RAMOS P M P,POSTOLACHE O, et al.. Tactile sensors for robotic applications [J]. Measurement, 2013, 46(3): 1257-1271.[13]刘双杰, 郝永平. S型折叠式微悬臂梁刚度计算[J]. 光学 精密工程, 2013, 21(2): 388-393.LIU S J, HAO Y P. Calculation for spring constants of folded serpentine micro-cantilevers[J]. Opt. Precision Eng., 2013, 21(2): 388-393.(in Chinese)[14]HE M,LIU R,LI Y, et al.. Tactile probing system based on micro-fabricated capacitive sensor[J]. Sensors and Actuators A: Physical, 2013, 194(1):128-134.[15]盛阳, 赵美蓉,刘明,等. 超微力发生系统及其电容采集模块的设计[J]. 传感技术学报, 2010, 10(23): 1505-1509.SHENG Y, ZHAO M R, LIU M, et al.. Design of micro force realization system and capacitance acquisition module [J]. Chinese Journal of Sensors and Actuators, 2010, 10(23): 1505-1509.(in Chinese)[16]节德刚, 刘延杰, 孙立宁, 等. 一种宏微双重驱动精密定位机构的建模与控制[J]. 光学 精密工程, 2005, 13(2): 171-178.JIE D G, LIU Y J, SUN L N, et al.. Modeling and control of a macro-micro dual-drive ultra-precision positioning mechanism[J]. Opt. Precision Eng., 2005, 13(2): 171-178. (in Chinese)[17]冯海兵. 一种并联宏/微驱动操作手的工作空间[J]. 光学 精密工程, 2013, 21(3): 717-723.FENG H B.. Workspace of macro/micro actuated parallel mechanism[J]. Opt. Precision Eng., 2013, 21(3): 717-723. (in Chinese)[18]卢歆. 三维微触觉测头校准装置的开发[D]. 杭州:中国计量学院, 2012.LU X. Study on the System for Calibrating 3D Micro Tactile Probes[D]. Hangzhou: Graduate University of the China Jiliang University, 2012.(in Chinese)
0
浏览量
142
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构