浏览全部资源
扫码关注微信
东南大学 仪器科学与工程学院 微惯性仪表与先进导航技术教育部重点实验室,江苏 南京,210096
收稿日期:2013-03-19,
修回日期:2013-05-08,
网络出版日期:2013-12-25,
纸质出版日期:2013-12-25
移动端阅览
曹慧亮, 李宏生, 王寿荣, 杨波, 黄丽斌. 硅微机械陀螺仪测控电路的温度补偿[J]. 光学精密工程, 2013,21(12): 3118-3125
CAO Hui-Liang, LI Hong-Sheng, WANG Shou-Rong, YANG Bei, HUANG Li-Bin. Temperature Compensation of Monitoring Circuit for Silicon MEMS Gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3118-3125
曹慧亮, 李宏生, 王寿荣, 杨波, 黄丽斌. 硅微机械陀螺仪测控电路的温度补偿[J]. 光学精密工程, 2013,21(12): 3118-3125 DOI: 10.3788/OPE.20132112.3118.
CAO Hui-Liang, LI Hong-Sheng, WANG Shou-Rong, YANG Bei, HUANG Li-Bin. Temperature Compensation of Monitoring Circuit for Silicon MEMS Gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3118-3125 DOI: 10.3788/OPE.20132112.3118.
提出了一种基于微机械陀螺仪测控电路进行温度补偿的方法。介绍了本课题组自主研发的SHH17#陀螺结构,分析了温度变化对陀螺的影响,并对驱动和检测模态的谐振频率,品质因数以及标度因数和零偏进行了测试。分析了陀螺结构的动力学方程以及测控电路,指出了标度因数与驱动幅度和检测回路增益成正比,与两模态频差成反比。以热敏电阻为补偿元件在检测次级放大器中补偿标度因数,然后以直流叠加的方法在低通滤波器模块对零偏的温度系数和输出值进行了补偿,并介绍了补偿参数的配置方法。实验显示,经过温度补偿,标度因数和零偏的温度系数分别由39310-6℃-1和75()h-1℃-1减小到了7310-6℃-1和20()h-1℃-1,补偿后0 ℃零偏值由89.59 mV减小到7.33 mV,标度因数和零偏的温度系数分别减小了80%和73%。得到的结果证明了补偿方法的正确性和可行性。
A temperature compensation method was proposed based on the periphery circuit of a Micro-electronic-mechanical System(MEMS) gyroscope. The structure of SHH17# MEMS gyroscope developed by ourselves was introduced
the effect of temperature changes on the gyroscope was analyzed
and the resonant frequency
quality factor
scale factor and the null bias of driving and sensing modes were tested. The dynamic equation and test circuits of the gyroscope were analyzed
then it points out that the scale factor is in direct proportion to driving amplitude and the gain of sense loop
and is in indirect proportion to the frequency gap between two modes. A thermal resistant was taken as the compensation element to compensate the scale factor in a secondary amplifier
then the temperature coefficients and output values of the null bias were compensated by superposing a reference voltage within the low pass filter in an output module. Furthermore
the circuits of the two compensation points were expanded and the parameters configuration details were introduced. Experiments indicate that the temperature coefficients of scale factor and null bias have reduced from 39310℃-6 and 75()h-1℃-1 to 7310-6℃-1 and 20()h-1℃-1 respectively(reduce by 80% and 73% )and the null bias values have decreased from 89.95 mV to 7.33 mV.These results demonstrate that the proposed method is feasibility and correction.
[1]李建利,房建成,盛蔚,等.双质量块调谐输出式硅MEMS陀螺仪的理论计算及仿真[J]. 光学 精密工程,2008,16(3):484-491.LI J L,FANG J CH, SHENG W, et al.. Calculation and simulation of silicon MEMS gyroscope with dual-mass resonant output [J]. Opt. Precision Eng., 2008, 16(3): 484-491. (in Chinese)[2]夏国明,杨波,王寿荣.硅微机械陀螺自激驱动数字化技术[J]. 光学 精密工程,2010,19(3):635-640.XIA G M, YANG B, WANG SH R. Digital self-oscillation driving technology for silicon micro machined gyroscopes [J]. Opt. Precision Eng., 2010, 19(3): 635-640. (in Chinese)[3]施芹,苏岩,裘安萍,等.MEMS陀螺仪器件级真空封装技术 [J]. 光学 精密工程,2009,17(8):1987-1992.SHI Q,SU Y, QIU A P, et al.. Device level vacuum packaging technologies of MEMS gyroscope [J]. Opt. Precision Eng., 2009, 17(8): 1987-1992. (in Chinese)[4]杨波,王寿荣,李坤宇,等.利用负刚度效应调谐的硅调谐式陀螺仪[J]. 光学 精密工程,2010,18(11):2398-2406.YANG B, WANG SH R, LI K Y, et al.. Silicon turning gyroscope tuned by negative stiffness effect [J]. Opt. Precision Eng., 2010, 18(11): 2398-2406. (in Chinese)[5]PATEL C, McCLUSKEY P, LEMUS D. Performance and reliability of MEMS gyroscope at high temperature [C]. IEEE Intersociety Conference on Thermal and Thermo-mechanical Phenomena in Electronic Systems, Las Vegas, 2010: 1-5. [6]王淑娟, 吴广玉. 惯性器件温度误差补偿方法综述[J]. 中国惯性技术学报, 1998, 6(3): 44-49.WANG SH J, WU G Y. A summary of the methods for compensating temperature error of inertial devices [J]. Journal of Chinese Inertial Technology, 1998, 6(3): 44-49. (in Chinese)[7]HO G K, SUNDARESAN K, POURKAMALI S. Micromechanical IBARs: tunable high-Q resonators for temperature-compensated reference oscillators [J]. Journal of Microelectromechanical Systems, 2010, 19(3): 503-515.[8]HOU Z Q, XIAO D B, WU X Z, et al.. Effect of die attachment on key dynamical parameters of micromachined gyroscopes[J]. Microsyst Technol, 2012, 18(4): 507-513.[9]XU L, YANG B, WANG SH R, et al.. On-Chip Temperature-control technology for silicon Micro-gyroscope [J]. Key Engineering Materials, 2011, 483: 228-231.[10]LEE S H, CHO J, LEE S W, et al.. A low-power oven-controlled vacuum package technology for high-performance MEMS [C]. IEEE 22nd International Conference on MEMS, Sorrento, 2009: 753-756.[11]XIA D Z, CHEN S L, WANG SH R, et al.. Microgyroscope temperature effects and compensation-control methods[J]. Sensors, 2009,9(10): 8349-8376.[12]PRIKHODOKO I P, TRUSOV A A, SHKEL A M. Compensation of drifts in high-Q MEMS gyroscopes using temperature self-sensing [J]. Sensors and Actuators A: Physical, 2013,201(10):517-524.[13]ZHANG Y S, WANG S W. Modeling and error compensation of MEMS gyroscope dynamic output data within the whole temperature range [J]. Advanced Materials Research, 2011, 311-313: 768-771.[14]FANG J CH, LI J L. Integrated model and compensation of thermal errors of silicon microelectromechanical gyroscope [J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(9): 2923-2930.[15]ZHU X H, CHU H J, SHI Q, et al.. Experimental study of compensation for the effect of temperature on a silicon micromachined gyroscope [J]. Proceedings of the Institution of Mechanical Engineers, Part N:Journal of Nanoengineering and Nanosystems, 2009, 222: 49-55.[16]程龙, 王寿荣, 叶甫. 硅微机械振动陀螺零偏温度补偿研究[J]. 传感技术学报, 2008, 21(3): 483-485.CHENG L, WANG SH R, YE F. Research on bias temperature compensation for micromachined vibratory gyroscope [J]. Chinese Journal of Sensors and Actuators, 2008, 21(3): 483-485. (in Chinese)[17]SHIAU J K, MA D M, CHEN X H, et al.. MEMS gyroscope null drift and compensation based on neural network [J]. Advanced Materials Research, 2011, 255-260:2077-2081.[18]YIN Y, WANG SH R, WANG C CH, et al.. Driving-mode test of dual-mass MEMS gyroscope[J]. Opt. Precision Eng., 2009, 17(6): 1355-1360.[19]裘安萍,苏 岩,王寿荣,等. 残余应力对Z轴硅微机械振动陀螺仪性能的影响[J]. 机械工程学报. 2005, 41(6): 228-232.QIU A P, SU Y, WANG SH R, et al.. Effect of stresses on micromachined Z-axis vibrating rate gyroscope [J]. Chinese Journal of Mechanical Engineering, 2005, 41(6): 228-232. (in Chinese)[20]王寿荣,黄丽斌,杨波. 微惯性仪表与微系统[M]. 北京: 兵器工业出版社,2011.WANG SH R, HUANG L B, YANG B. Micro Inertial Instrument and Micro System [M]. Beijing: Publishing House of Ordnance Industry, 2011. (in Chinese)[21]微机械陀螺联合测试组. 微机械陀螺仪测试细则[S]. 北京: 微机械陀螺仪联合测试组,2010.Micro mechanical gyroscope united test group. Micro mechanical gyroscope test conditions[S]. Beijing: Micro Mechanical Gyroscope United Test Group, 2010. (in Chinese)
0
浏览量
903
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构