浏览全部资源
扫码关注微信
北京科技大学 冶金工程研究院 北京,100083
收稿日期:2013-05-09,
修回日期:2013-07-03,
网络出版日期:2013-12-25,
纸质出版日期:2013-12-25
移动端阅览
武会宾, 武凤娟, 孙蓟泉, 唐荻. 微米/纳米复合结构逆转变奥氏体组织控制[J]. 光学精密工程, 2013,21(12): 3126-3132
WU Hui-Bin, WU Feng-Juan, SUN Ji-Quan, TANG Di. Structure control of micrometer/nanometer scale reverse transformation austenite[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3126-3132
武会宾, 武凤娟, 孙蓟泉, 唐荻. 微米/纳米复合结构逆转变奥氏体组织控制[J]. 光学精密工程, 2013,21(12): 3126-3132 DOI: 10.3788/OPE.20132112.3126.
WU Hui-Bin, WU Feng-Juan, SUN Ji-Quan, TANG Di. Structure control of micrometer/nanometer scale reverse transformation austenite[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3126-3132 DOI: 10.3788/OPE.20132112.3126.
为了控制微米/纳米复合结构逆转变奥氏体组织,研究了冷变形及退火工艺参数对316L奥氏体不锈钢逆转变组织和力学性能的影响。首先,对样品进行冷变形;然后,对不同变形量的样品进行退火处理。利用光学显微镜和扫描电镜以不同尺度对样品进行组织观察,通过X射线衍射、磁性测量进行组成相分析,利用维式硬度和单向拉伸试验对样品进行力学性能测试。结果表明:冷变形量为90%时,钢中应变诱导马氏体含量接近71.72%,硬度由原始试样的193.10 Hv增加到475.77 Hv;在820~870 ℃保温60 s,退火后可以获得微米/纳米复合结构组织,其中850 ℃退火后的样品其逆转变奥氏体组织的百分含量为100%,粒径500 nm的晶粒占29.6%,粒径>0.5 m的约占70.4%,其抗拉强度可达959.24 MPa,延伸率为44.6%,强塑性结合好于原始试样。
To control the micrometer/nanometer scale reverse transformation austenite structure
the effects of cold deformation and annealing parameters on the microstructural development and mechanical properties of the 316 L austenite were investigated. First
the cold deformation was performed for the specimens
and then the specimens with different deformations were annealed. The microstructural evolutions of the specimens were analyzed by using a optical microscope and a scanning electron microscopy
the composed phases of the specimens were researched by a magnetic measurement and X-ray diffraction and their mechanical properties were determined by Vickers hardness method and tensile tests. The results show that the stain-induced martensite is almost 71.72% at 90% cold deformation
and the hardness value increases from 193.10 Hv to 475.77 Hv. The resultant micrometer/nanometer grained steel can be obtained after annealing at 820-870 ℃ for 60 s and austenite grains with a size greater than 0.5 m (70.4%)and less than 500 nm(29.6%) can be obtained after annealing at 850 ℃ for 60 s. Moreover
the specimens are completely reversed to austenite (100%). The resultant micrometer/nanometer grained steel not only exhibits a high strength level about 959.24 MPa
but also a desirable elongation of about 44.6%.
[1]MALI S, MISRA R D K, SOMANI M C, et al.. Biomimetic nanostructured coatings on nano-grained/ultrafine-grained substrate: Microstructure, surface adhesion strength, and biosolubility[J]. Materials Science and Engineering C, 2009, 29 :2417-2427.[2]MISRA R D K, THEIN H W W, PESACRETA T C, et al.. Biological significance of nanograined/ultrafine-grained structures: Interaction with fibroblasts[J]. Acta Biomaterialia,2010,6(8): 3339-3348. [3]MISRA R D K, THEIN-HAN W W, MALI S A, et al.. Cellular activity of bioactive nanograined/ultrafine-grained materials[J]. Acta Biomaterialia, 2010,6(7): 2826-2835. [4]VENKATSURYA P K C, THEIN-HAN W W, MISRA R D K, et al.. Advancing nanograined/ultrafine-grained structures for metal implant technology: Interplay between grooving of nano/ultrafine grains and cellular response [J]. Materials Science and Engineering C, 2010, 30(7): 1050-1059.[5]MISRA R D K, RAVI KUMAR B, SOMANIB M, et al.. Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels[J]. Scripta Materialia, 2008,59(1): 79-82.[6]HWANG B, LEE C G. Influence of thermomechanical processing and heat treatments on tensile and Charpy impact properties of B and Cu bearing high-strength low-alloy steels [J]. Materials Science and Engineering A, 2010, 527(16-17): 4341-4346.[7]MUSZKA K, HODGSON P D, MAJTA J. Study of the effect of grain size on the dynamic mechanical properties of microalloyed steels [J]. Materials Science and Engineering A, 2009, 500(1-2): 25-33. [8]YAKUBSTSOV I A, PORUKS P, BOYD J D. Microstructure and mechanical properties of bainitic low carbon high strength plate steels [J]. Materials Science and Engineering A, 2008, 480(1-2): 109-116.[9]WENG Y Q. Achievements of N.G. Steels program in China [C]. Proceedings of Second International Conference on Advanced Structural Steels, Shanghai, 2004: 1-14.[10]GARCIA M C, CABALLERO F G, BHADESHIA H K D H. Development of hard bainite [J]. ISIJ International, 2003, 43(8): 1238-1243. [11]翁宇庆,杨才福,尚成嘉. 低合金钢在中国的发展现状与趋势[J]. 钢铁,2011,46(9):6-15.WENG Y Q, YANG C F, SHANG CH J. State of the art and development trends of HSLA steels in china [J]. Iron and steel, 2011, 46(9): 6-15. (in Chinese)[12]FOROUZAN F, NAJAFIZADEH A, KERMANPUR A, et al.. Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process[J]. Materials Science and Engineering A, 2010,527(27-28): 7334-7339.
0
浏览量
739
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构