浏览全部资源
扫码关注微信
1. 西北工业大学陕西省微/纳米系统重点实验室
2. 西北工业大学 空天微/纳系统教育部重点实验室,陕西 西安,710072
收稿日期:2013-03-18,
修回日期:2013-04-25,
网络出版日期:2013-12-25,
纸质出版日期:2013-12-25
移动端阅览
苑伟政, 焦文龙, 常洪龙. 微流控系统级设计技术[J]. 光学精密工程, 2013,21(12): 3141-3151
YU Wei-Zheng, JIAO Wen-Long, CHANG Hong-Long. System Level Design of Microfluidics[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3141-3151
苑伟政, 焦文龙, 常洪龙. 微流控系统级设计技术[J]. 光学精密工程, 2013,21(12): 3141-3151 DOI: 10.3788/OPE.20132112.3141.
YU Wei-Zheng, JIAO Wen-Long, CHANG Hong-Long. System Level Design of Microfluidics[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3141-3151 DOI: 10.3788/OPE.20132112.3141.
微流控设计技术对于提高微流控设计效率,降低研发成本具有重要意义。微流控设计技术中的系统级建模与仿真是实现微流控快速设计、优化、验证的重要方法。本文首先对微流控设计 的原理和方法做了简要介绍。在此基础之上,重点论述了微流控系统级设计中的两种主要方法节点分析法和等效电路法,对两种方法的建模与仿真理论进行了分析,并总结了两种方法近十年来在国内外的研究发展概况和最新进展。最后,分析总结了这两种方法的优缺点,并对微流控系统级设计技术进行了总结与展望,指出微流控系统级建模与仿真技术在解决大规模、复杂性、多功能微流控系统的设计方面有巨大的优势。
It is important to design microfluidic technologies for improving the efficiency of microfluidics and reducing the costs of research and development. However
system level design
modeling and simulation are significant methods for rapid design
optimization,and verification of the microfluidics. This paper introduces the principles and methods of microfluidic design
firstly. Then
it focuses on two main system level design methods
nodal analysis method and equivalent circuit method. After a brief discussion of microfluidic design technology
it introduces the modeling and simulation processes of the two methods
and overviews their research status and development trends in the last ten years at home and abroad. Finally
it summarizes merits and demerits of the two methods and discusses their development prospects. It points out that the system level design and modeling will be great superiority for design a microfluidic system with large-scale
complexity and multi-function.
[1]WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101): 368-373.[2]刘冲, 梁勇, 李经民, 等. 微流控芯片操作机器人碰撞保护装置的设计[J]. 光学 精密工程, 2009, 17(1): 138-144.LIU CH, LIANG Y, LI J M, et al.. Design of collision protection system of handling robot for microfluidic chip [J]. Opt. Precision Eng., 2009, 17(1): 138-144. (in Chinese)[3]刘翔, 皋华敏, 李铁, 等. 低电压下静电力驱动的数字微流控芯片[J]. 光学 精密工程, 2011, 19(1): 97-102.LIU X, GAO H M, LI T, et al.. Digital microfluidic chip by electrostatic manipulation in low voltage[J]. Opt. Precision Eng., 2011, 19(1): 97-102. (in Chinese)[4]徐征, 王继章, 杨铎, 等. 辅助溶剂对PMMA微流控芯片模内键合的影响[J]. 光学 精密工程, 2012, 20(2): 321-328.XU ZH, WANG J ZH, YANG D, et al.. Effect of assistant solvent on in-mold bonding of PMMA microfluidic chips [J]. Opt. Precision Eng., 2012, 20(2): 321-328. (in Chinese)[5]林炳承, 秦建华. 图解微流控芯片实验室[M]. 北京: 科学出版社, 2008.LIN B CH, QIN J H. Graphical Introduction of Microfluidic Lab on a Chip[M]. Beijing: Science Press, 2008. (in Chinese)[6]WHITE J. CAD challenges in bioMEMS design[C]. Proceedings of the 41st Annual Design Automation Conference, San Diego, USA, 2004: 629-632.[7]WHITE J. Developing design tools for biological and biomedical applications of micro- and nano-technology[C]. Proceedings of the 3rd IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, Jersey City, USA, 2005: 196-200.[8]SENTURIA S D. CAD challenges for microsensors, microactuators, and microsystems[J]. Proceedings of the IEEE, 1998, 86(8): 1611-1626.[9]CHAKRABARTY K, ZENG J. Design automation for microfluidics-based biochips[J]. ACM Journal on Emerging Technologies in Computing Systems, 2005, 1(3): 186-223.[10]MAGARGLE R. Modeling and simulation for robust design of microfluidic lab-on-a-chip systems[D]. Pittsburgh: Carnegie Mellon University, 2007.[11]ZHANG T H. An integrated hierarchical modeling and simulation approach for miroelectrofluidic systems[D]. Durham: Duke University, 2001.[12]WANG Y, LIN Q, MUKHERJEE T. System-oriented dispersion models of general-shaped electrophoresis microchannels [J]. Lab on a Chip, 2004, 4(5): 453-463.[13]李红卫. 微流控芯片系统级建模研究[D]. 西安: 西北工业大学, 2007.LI H W. Research on system level modeling of microfluidic chips[D]. Xi'an: Northwestern Polytechnical University, 2007. (in Chinese)[14]胡章优. 微流控CAD可视化系统开发及实现[D]. 长春: 吉林大学, 2006.HU ZH Y. Micro-fluidic CAD visualization system development and implementation[D]. Changchun: Jilin University, 2006. (in Chinese)[15]MUKHERJEE T. Design automation issues for biofluidic microchips [C]. Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 2005: 464-470.[16]ZENGERLE R, RICHTER M. Simulation of microfluid systems[J]. Journal of Micromechanics and Microengineerings, 1994, 4(4): 192-204.[17]BOUROUINA T, GRANDCHAMP J P. Modeling micropumps with electrical equivalent networks [J]. Journal of Micromechanics and Microengineerings, 1996, 6(4): 398-404.[18]CARMONA M, MARCO S, SAMITIER J, et al.. Dynamic simulations of micropumps[J]. Journal of Micromechanics and Microengineerings, 1996, 6(1): 128-130.[19]KUNDU P K, COHEN I M. Fluid Mechanics[M]. 5th ed. Saint Louis: Academic Press, 2012.[20]郑毅, 谢海波, 傅新, 等. Y-sensor中两相层流交界面位置及分子扩散[J]. 浙江大学学报:工学版, 2009, 43(10): 1757-1760.ZHENG Y, XIE H B, FU X, et al.. Interface position and molecule diffusion of two-phase laminar flow in Y-sensor[J]. Journal of Zhejiang University:Engineering Science, 2009, 43(10): 1757-1760. (in Chinese)[21]OH K W, LEE K, AHN B, et al.. Design of pressure-driven microfluidic networks using electric circuit analogy [J]. Lab on a Chip, 2012, 12(3): 515-545.[22]WANG Y. Modeling and simulation of lab-on-a-chip systems[D]. Pittsburgh: Carnegie Mellon University, 2006.[23]VOIGT P, SCHRAG G, WACHUTKA G. Microfluidic system modeling using VHDL-AMS and circuit simulation[J]. Journal of Microelectronics, 1998, 29(11): 791-797.[24]ZENG Y, AZIZI F, MASTRANGELO C H. Behavioral modeling of solute tracking in microfluidics [C]. Proceedings of Behavioral Modeling and Simulation Workshop, San Jose, USA, 2009: 1-6.[25]SESTERHENN M, MELLMANN J, LOHR M, et al.. Simulation of (self-)priming in capillary systems using lumped models[C]. Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems, San Juan, USA, 1999: 538-541.[26]AUMEERALLY M. Analytic model derivation of microfluidic flow for MEMS virtual-reality CAD[D]. Gold Coast: Griffith University, 2004.[27]LITTERST C, STREULE W, ZENGERLE R, et al.. Simulation toolkit for micro-fluidic pumps using lumped models [C]. Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Anaheim, USA, 2005: 736-739.[28]WANG Y, BEDEKAR A S, KRISHNAMOORTHY S, et al.. System-level modeling and simulation of biochemical assays in lab-on-a-chip devices[J]. Microfluidics and Nanofluidics, 2007, 3(3): 307-322.[29]WANG Y, PANT K. System-level modeling of surface-immobilized biomolecular concentration gradient generation[C]. Proceedings of the ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference, Shanghai, China, 2009: 1-8.[30]SONG H J, WANG Y, PANT K. System-level simulation of liquid filling in microfluidic chips[J]. Biomicrofluidics, 2011, 5(2): 024107.[31]KORSMEYER T, ZENG J, GREINER K. Design tools for bioMEMS [C]. Proceedings of the 41st Annual Design Automation Conference, San Diego, USA, 2004: 622-627.[32]MIYAKE R, OKABE S, TSUDOME H, et al.. Highly practical, model-based simulation platform for integrated micro-fluid circuit [C]. Proceedings of 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Groningen, Netherlands, 2010: 1760-1762.[33]LEE K S. Pressure-driven microfluidic networks using electric circuit analogy for on-chip cell assay applications[D]. New York: State University of New York, 2011.[34]KIM D S, CHESLER N C, BEEBE D J. A method for dynamic system characterization using hydraulic series resistance [J]. Lab on a Chip, 2006, 6(5): 639-644.[35]NAKATA A, TANAKA S, SUGANO K, et al.. Electrical equivalent circuit model of microfluidic system containing piezoelectric valveless micropump and viscoelastic PDMS microchannel [C]. Proceedings of the 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences, San Diego, USA, 2008: 730-732.[36]VEDEL S. Millisecond dynamics in microfluidics: equivalent circuit theory and experiment [D]. Copenhagen: Technical University of Denmark, 2009.[37]MORRIS P J. Equivalent circuit modeling and analysis of microflow stabilization through compliant microchannels[D]. San Jose: San Jose State University, 2011.[38]QIAO R, ALURU N R. A compact model for electroosmotic flows in microfluidic devices[J]. Journal of Micromechanics and Microengineerings, 2002, 12(5): 625-635.[39]AJDARI A. Steady flows in networks of microfluidic channels: building on the analogy with electrical circuits[J]. Comptes Rendus Physique, 2004, 5(5): 539-546.[40]CHATTERJEE A N, ALURU N R. Combined circuit/device modeling and simulation of integrated microfluidic systems[J]. Journal of Microelectromechanical Systems, 2005, 14(1): 81-95.[41]HORIUCHI K, DUTTA P. Electrokinetic flow control in microfluidic chips using a field-effect transistor[J]. Lab on a Chip, 2006, 6(6): 714-723.[42]BERLI C L A. Equivalent circuit modeling of electrokinetically driven analytical microsystems[J]. Microfluidics and Nanofluidics, 2008, 4(5): 391-399.[43]KANG S W, BANERJEE D. Modeling and simulation of capillary microfluidic networks based on electrical analogies[J]. Journal of Fluids Engineering, 2011, 133(5): 054502.[44]CHEN X Y, LIU C, XU Z, et al.. An analytical macro-micro-model for a micromixer[J]. Journal of Information & Computational Science, 2010, 7(3): 785-797.
0
浏览量
401
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构