浏览全部资源
扫码关注微信
1. 西安交通大学 机械制造系统工程国家重点实验室,陕西 西安,710049
2. 新疆交通职业技术学院 汽车与机电工程学院,新疆 乌鲁木齐,831401
3. 陕西省计量科学研究院,陕西 西安,710048
收稿日期:2013-05-09,
修回日期:2013-07-31,
网络出版日期:2013-12-25,
纸质出版日期:2013-12-25
移动端阅览
郭鑫, 热合曼, .艾比布力, 王鸿雁, 赵立波, 蒋庄德. 自增强承压圆筒结构的超高压力传感器[J]. 光学精密工程, 2013,21(12): 3152-3159
GUO Xin, RE Ge-Man, .Ai-Bi-Bu-Li , WANG Hong-Yan, DIAO Li-Bo, JIANG Zhuang-De. Ultra-High Pressure Sensor with Autofrettaged Cylinder Structure[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3152-3159
郭鑫, 热合曼, .艾比布力, 王鸿雁, 赵立波, 蒋庄德. 自增强承压圆筒结构的超高压力传感器[J]. 光学精密工程, 2013,21(12): 3152-3159 DOI: 10.3788/OPE.20132112.3152.
GUO Xin, RE Ge-Man, .Ai-Bi-Bu-Li , WANG Hong-Yan, DIAO Li-Bo, JIANG Zhuang-De. Ultra-High Pressure Sensor with Autofrettaged Cylinder Structure[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3152-3159 DOI: 10.3788/OPE.20132112.3152.
采用自增强技术与硅压阻效应研制了超高压力传感器,该传感器能够消除封装残余应力的影响并保证其在进行大量程压力测量时具有较高的灵敏度输出。该传感器的弹性元件为圆筒结构的高强度弹簧钢,敏感元件为平膜倒杯式硅压阻芯片。传感器工作时,超高压力作用在圆筒结构的金属弹性元件使其发生轴向位移,该位移量通过弹性元件顶端的传递杆施加到周边固支的硅压阻芯片上,使置于此处的4个电阻条阻值发生线性变化,从而输出与被测压力成正比的电压值。在研究弹性元件在1 000 MPa超高压力下的工作性能时,理论与仿真相结合研究了弹性元件的承载强度,确定采用自增强处理技术提高弹性元件的承载能力。最后,对封装好的传感器静态性能进行了标定实验。实验结果表明,该传感器能够承受1 000 MPa以上的工作压力
线性度为0.52%,满足工业领域的应用需求。
An ultra-high pressure sensor based on autofrettage technology and piezoresistive effect is developed to remove the residual stress in packaging and to ensure a high sensitive output in pressure measurement with a large range. The elastic element is made of high strength spring steel with cylinder structure
and the sensitive element is silicon flat chip with an inverted cup structure. When the pressure is applied to the metal elastic element
the axial deformation of the metal elastic element is occurred and passed to the chip via a pass rod
then the chip's resistive signal is proportional to the axial deformation based on the piezoresistive effect. The pressure measurement is accomplished by measuring the resistive signal. In the study of working ability of the elastic element
the load bearing strength of the elastic element is researched by combining the theory and simulation
and the autofrettage technology is used to improve the loading ability of the elastic element. Finally
the static performance experiments in 250 MPa and 1 000 MPa ranges are carried out for a packaged sensor respectively. The experiments show that the comprehensive accuracy of the sensor is 2.3%
the linearity is 0.7% in 250 MPa and 0.52% in 1 000 MPa . The simulative and experimental results both indicate that the metal elastic element with autofrettaged cylinder structure is able to endure ultra-high pressure beyond 1 000 MPa
and the developed sensor can meet the measuring demand of the contemporary industry.
[1]KURTZ A D, NED A A, GOODMAN S, et al.. Latest ruggedized high temperature piezoresistive transducers [C]. NASA 2003 Propulsion Measurement Sensor Development Workshop, Huntsville, AL,2003:13-15.[2]ZHAO Y L, ZHAO L B, JIANG Z D. High temperature and frequency pressure sensor based on silicon-on-insulator layers [J]. Measurement Science and Technology, 2006, 17(3): 519-523.[3]张世荣,文彬,崔光浩. 双膜片的硅-蓝宝石高温压力传感器[J].黑龙江大学自然科学学报, 2001,18(4): 56-58,62.ZHANG SH R, WEN B, CUI G H. A kind of SOS high temperature pressure transducer with double membrane [J]. Journal of Natural Science of Heilongjiang University, 2001,18(4):56-58,62. (in Chinese)[4]晏建武,周继承,鲁世强,等.合金薄膜电阻应变式压力传感器的研究进展[J].材料导报,2005,19(12): 31-34. YAN J W, ZHOU J C, LU S Q, et al.. Development and investigation trends of alloy thin film piezoresistive sensor [J]. Material Review, 2005,19(12): 31-34. (in Chinese)[5]乐孜纯. 微弯光纤压力传感器应变膜片研究[J].光学 精密工程, 1994,2(3):41-47.LE Z C. Design of strain diaphragm using in the microbend fiber-optic pressure sensor[J]. Opt. Precision Eng., 1994,2(3):41-47.(in Chinese)[6]伞海生, 宋子军, 王翔, 等. 适用于恶劣环境的MEMS压阻式压力传感器[J].光学 精密工程, 2012,20(3): 550-555.SAN H SH, SONG Z J, WANG X, et al.. Piezoresistive pressure sensor for harsh environments[J]. Opt. Precision Eng., 2012,20(3): 550-555.(in Chinese)[7]邵国华. 超高压容器[M]. 北京: 化学工业出版社, 2002.SHAO G H. Ultrahigh Pressure Vessels [M]. Beijing:Chemical Industry Press, 2002. (in Chinese)[8]袁希光. 传感器技术手册[M]. 北京: 国防工业出版社, 1992.YUAN X G. Sensor Technology Handbook [M]. Beijing:National Defence Industrial Press,1992. (in Chinese)[9]王伟忠,赵玉龙,林启敬. MEMS三维微力探针传感器设计及性能测试[J]. 纳米技术与精密工程, 2011, 9(3): 199-202.WANG W Z, ZHAO Y L, LIN Q J. Design and performance test of MEMS tri-axial micro-force probe sensor [J]. Nanotechnology and Precision Engineering, 2011, 9(3): 199-202. (in Chinese)[10]陈涛,孙立宁,陈立国,等. 侧壁压阻式力传感器的研制与标定[J]. 纳米技术与精密工程,2010,8(3):201-205.CHEN T, SUN L N, CHEN L G, et al.. Design and calibration of sidewall piezoresistive force sensor [J]. Nanotechnology and Precision Engineering,2010,8(3):201-205. (in Chinese)[11]干勇. 钢铁材料手册[M].北京:化学工业出版社,2009.GAN Y. Steel Manual [M]. Beijing:Chemical Industry Press, 2009. (in Chinese)[12]傅卫国. 自增强容器最大弹性许可载荷的最宜超应变度[J]. 化工装备技术,1995, 16(1): 33-35.FU W G. Optimized overstrain degree of autofrettaged during maximum elastic strength [J]. Chemical Equipment Technology, 1995, 16(1): 33-35. (in Chinese)[13]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.WANG X M. ANSYS Numerical Analysis of Engineering Structure [M]. Beijing:China Communications Press, 2007. (in Chinese)
0
浏览量
508
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构