浏览全部资源
扫码关注微信
1. 中国地质大学 计算机学院,湖北 武汉,430074
2. 武汉工程大学 计算机科学与工程学院,湖北 武汉,430073
收稿日期:2013-06-21,
修回日期:2013-08-24,
网络出版日期:2013-12-25,
纸质出版日期:2013-12-25
移动端阅览
颜雪松, 胡成玉, 姚宏, 伍庆华. 精英粒子群优化算法及其在机器人路径规划中的应用[J]. 光学精密工程, 2013,21(12): 3160-3168
YA Xue-Song, HU Cheng-Yu, TAO Hong, WU Qing-Hua. Elite particle swarm optimization algorithm and its application in robot path planning[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3160-3168
颜雪松, 胡成玉, 姚宏, 伍庆华. 精英粒子群优化算法及其在机器人路径规划中的应用[J]. 光学精密工程, 2013,21(12): 3160-3168 DOI: 10.3788/OPE.20132112.3160.
YA Xue-Song, HU Cheng-Yu, TAO Hong, WU Qing-Hua. Elite particle swarm optimization algorithm and its application in robot path planning[J]. Editorial Office of Optics and Precision Engineering, 2013,21(12): 3160-3168 DOI: 10.3788/OPE.20132112.3160.
针对标准粒子群优化(PSO)算法容易陷入局部最优的缺点,提出了一种基于标准PSO算法的新算法。该算法通过引入新的更新函数和精英选择策略,可在保持较高收敛速度的同时,降低陷入局部最优的可能性。与标准PSO算法相比较,不仅扩大了搜索空间,并且复杂度也不高。研究结果证明该算法更容易引导,而且具有更高效的全局搜索能力,展示了较高的效率和鲁棒性。将该算法用于解决机器人路径规划问题并进行了仿真实验,结果显示,与传统的方法相比,新算法在机器人路径规划问题上能获得更加准确的路径,而且计算时间可以缩短15%, 比其他算法更有效。
To overcome the shortcomings of standard Particle Swarm Optimization (PSO) algorithm that is easy to trapp into a local optimum
the improved PSO was proposed based on the standard PSO. By inducing the renewal functions and a best selecting strategy
the improved algorithm could keep the fast convergence speed and reduce the possibility of trapping into a local optimum. As compared the standard PSO
the improved algorithm not only enlarges the searing space but also shows lower complexity. Obtained results prove that the algorithm is easy to be induced and has a higher global searching ability in high efficiency and better robustness. The improved algorithm was applied to solving the robot path planning problem. The simulation experiments show that the improved algorithm can get more accurate path in the robot path planning and its calculation time can reduced by 15% as compared with that of traditional methods. These results prove the feasibility and efficiency of the improved algorithm.
[1]SCHWEFEL H P. Evolution and Optimum Seeking [M]. Wiley, 1995.[2]KENNEDY J,EBERHART R C. Particle swarm optimization [C]. IEEE International Conference on Neural Networks, 1995: 1942-1948.[3]CLARE M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans. on Evolutionary Computation, 2002,6(1):58-73.[4]COELLO C A, LECHUGA M S. A proposal for multiple objective particle swarm optimization [C]. IEEE Proceedings World Congress on Computational Intelligence, 2002: 1051-1056.[5]KENNEDY J. The particle swarm: social adaptation of knowledge [C]. Proc. IEEE int.Conf.on evolutionary computation, 1997: 3003-3008.[6]ZHAN Z H, ZHANG J, LI Y,et al.. Adaptive particle swarm optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39 (6): 1362-1381.[7]PEDERSEN M E H, CHIPPRFIELD A J. Simplifying particle swarm optimization [J]. Applied Soft Computing, 2010, 10 (2): 618-628.[8]ZHAN Z H, ZHANG J, LI Y,et al.. Orthogonal learning particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2011, 15 (6): 832-847.[9]CHEN W N,ZHANG J. A novel set-based particle swarm optimization method for discrete optimization problem [J]. IEEE Transactions on Evolutionary Computation, 2010, 14 (2): 278-300.[10]YAN X S,WU Q H,HU CH Y,et al.. Circuit design based on particle swarm optimization algorithms [J]. Key Engineering Materials, 2011, 474-476: 1093-1098.[11]LIU G,LI T,PENG Y,et al.. The ant algorithm for solving robot path planning problem [C]. Proceedings of 3rd International Conf on Information Technology and Applications, 2005, 2:25-27.[12]YAHJA A,SINGH S,STENTZ A. An efficient on-line path planner for outdoor mobile robots [J]. Robotics and Autonomous Systems, 2000, 32: 129-143.[13]NEHMZOW U, OWEN C. Robot navigation in the real world: experiments with manchesters forty two in unmodified large environments [J]. Robotics and Autonomous Systems, 2000, 33: 223-242.[14]HOWARD A,SERAJI H. Vision-based terrain characterization and traversability assessment [J]. Journal of Robotic Systems, 2001, 18(10): 577-587.[15]GENNERY D B. Traversability analysis and path planning for planetary rovers [J]. Autonomous Robots, 1999, 6: 131-146.[16]LATOMBE J C. Robot Motion Planning [M]. Boston:Kluwer Academic Publishers, 1998.[17]de RODRGUEZ M B, MORENO J. Heuristic algorithm for robot path planning based on real space renormalization [C]. Proceedings of the International Joint Conference, 7th Ibero-American Conference on AI: Advances in Artificial Intelligence Table of Contents, 2000: 379-388.[18]BARRAQUAND J, LANGLOIS B, LATOMBE J C. Numerical potential field techniques for robot path planning [J]. IEEE Transactions on System, Man and Cybernetic, 1992, 22(2): 224-241.[19]DURBIN R, WILLSHAW D. An anlaogue approach to the traveling salesman problem using an elastic net approach [J]. Nature, 1987, 326(6114): 689-691.[20]YAN X S,WU Q H. A robot path planning algorithm based on evolutionary algorithm [J]. The Supplement Issue of Dynamics of Continuous, Discrete & Impulsive Systems, Series B: Applications & Algorithms, 2007, 14(S4): 66-70.[21]YAN X S,WU Q H. A fast evolutionary algorithm for robot path planning [C]. Proceedings of the 2007 IEEE International Conference on Control and Automation, 2007: 84-87.
0
浏览量
317
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构