浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
3. 中国科学院 苏州生物医学工程技术研究所,江苏 苏州,中国,215163
4. 北京交通大学 理学院 北京,100044
收稿日期:2012-11-22,
纸质出版日期:2014-01-15
移动端阅览
肖昀, 张运海, 王真等. 入射激光对激光扫描共聚焦显微镜分辨率的影响[J]. 光学精密工程, 2014,22(1): 31-38
XIAO Yun, ZHANG Yun-hai, WANG Zhen etc. Effect of incident laser on resolution of LSCM[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 31-38
肖昀, 张运海, 王真等. 入射激光对激光扫描共聚焦显微镜分辨率的影响[J]. 光学精密工程, 2014,22(1): 31-38 DOI: 10.3788/OPE.20142201.0031.
XIAO Yun, ZHANG Yun-hai, WANG Zhen etc. Effect of incident laser on resolution of LSCM[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 31-38 DOI: 10.3788/OPE.20142201.0031.
利用点扩散函数(PSF)研究了入射激光的偏振态和光束的束腰直径对激光扫描共聚焦显微镜(LSCM)分辨率的影响。根据Wolf和Richards的矢量衍射积分
建立了LSCM N-1层界面下的照明PSF模型
对零层和两层界面下的PSF进行了计算分析。结果显示:在零层界面下
圆偏振光入射的PSF在
xy
平面内关于焦点旋转对称
半峰全宽为0.43 μm
x
向线偏振光入射时PSF在
x、y
方向的半峰全宽分别为0.48
0.39 μm;在圆偏振光入射的PSF中
高斯光束充溢系数为0
1
2
5对应的半峰全宽分别为0.43
0.47
0.62
1.49 μm。在两层界面下
当探测深度为50 μm时
圆偏振光PSF的半峰全宽为0.26 μm
x
向线偏振光入射时PSF在
x、y
方向的半峰全宽分别为0.28
0.24 μm;在圆偏振光入射的PSF中
充溢系数为0
1
2
5对应的半峰全宽分别为0.26
0.28
0.32
0.68 μm。以上计算结果表明
和线偏振光相比
圆偏振光在一个方向的分辨率优于线偏振光
在相垂直的另一个方向的分辨率弱于线偏振光
圆偏振光PSF在
xy
平面内关于焦点旋转对称
得到了较好的成像质量;物镜入瞳直径与激光束腰直径比值越小
LSCM的分辨率越好。
The effect of the polarization and intensity profile of an incident laser on the resolution of a Laser Scanning Confocal Microscope (LSCM) was investigated.According to the vectorial diffraction integral of Wolf and Richards
a model of the illumination Point Spread Function (PSF) of LSCM with N-1 interfaces was established to calculate and analyze the PSFs on the zero interface and two interfaces.The analysis shows that for the zero interface
the local Full Width at Half Maximum (FWHM) of the PSF with circular polarization is 0.43 μm
which is rotationally symmetric in the
xy
plane
and the FWHMs along
x
axis and
y
axis of the PSF with linear polarization are 0.48
0.39 μm
respectively in the
x
axis.As the filling parameters of a Gaussian light are 0
1
2
5
the FWHMs of the PSF with circular polarization are 0.43
0.47
0.62 μm and 1.49 μm
respectively. For two interfaces
when the probe depth is 50 μm
the FWHM of the PSF with circular polarization is 0.26 μm
and the FWHMs along
x
axis and
y
axis of the PSF with linear polarization are 0.28
0.24 μm
respectively in
x
axis; for the filling parameters of 0
1
2
5
and the probe depth of 50 μm
the FWHMs of the PSF with circular polarization are 0.26
0.28
0.32 and 0.68 μm
respectively. Calculations metioned above show that the resolution of the circularly polarized light is better than that of the linearly polarized light in one direction
but it is worse than that of the linearly polarized light in the perpendicular direction. The PSF with the circularly polarized light is rotationally symmetric in the
xy
plane
therefore
a better image can be obtained. The smaller the filling parameter is
the better the resolution of LSCM is.
DAVIDOVI P, EGGER M D. Scanning laser microscope for biological investigations[J]. Applied Optics, 1971, 10(7): 1615-1619.
WAKUDA H, NEJIME N, TADA Y, et al.. A novel method using confocal laser scanning microscopy for sensitive measurement of P-glycoprotein-mediated transport activity in Caco-2 cells[J]. J. Pharm. Pharmacol., 2011, 63(8): 1015-1021.
HOVAKIMYAN M, GUTHOFF R, REICHARD M, et al..In vivo confocal laser-scanning microscopy to characterize wound repair in rabbit corneas after collagen cross-linking[J]. Clin. Exp. Ophthalmol., 2011, 39(9): 899-909.
NASSE M J, WOEHL J C. Realistic modeling of the illumination point spread function in confocal scanning optical microscopy [J]. J. Opt. Soc. Am. A, 2010, 27(2):295-302.
KHONINA S N, GOLUB I. How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy [J]. J. Opt. Soc. Am. A, 2012, 29(10):2242-2246.
RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system [J]. Proc. R. Soc. London, Ser. A, 1959, 253(1274): 358-379.
TOROK P, VARGA P, LACZIK Z, et al.. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation[J].J. Opt. Soc. Am. A, 1995, 12(2): 325-332.
TOROK P, VARGA P, BOOKER G R. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. I [J]. J. Opt. Soc. Am. A, 1995, 12(10): 2136-2144.
TOROK P, VARGA P, BOOKER G R.Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field. II [J]. J. Opt. Soc. Am. A, 1996, 13(11): 2232-2238.
TOROK P, VARGA P. Electromagnetic diffraction of light focused through a stratified medium[J]. Applied Optics, 1997, 36(11): 2305-2312.
TOROK P, HIGDON P D, WILSON T. On the general properties of polarized light conventional and confocal microscopes[J]. Opt. Commun., 1998, 148(4-6): 300-315.
LIN S H, CHEN Z M, LIU S J, et al..Three-dimensional observation of defects in nitrogen-doped 6H-SiC crystals using a laser scanning confocal microscope [J]. J. Mater. Sci., 2012, 47(7): 3429-3434.
BOULESTEIX R, MAITRE A, BAUMARD J F, et al.. Quantitative characterization of pores in transparent ceramics by coupling electron microscopy and confocal laser scanning microscopy[J]. Mater. Lett., 2010, 64(16): 1854-1857.
CHETVERIKOV P E. Confocal laser scanning microscopy technique for the study of internal genitalia and external morphology of eriophyoid mites (Acari: Eriophyoidea)[J]. Zootaxa, 2012, 3453: 56-68.
MCFADDEN C, BARTZ J, AKSELROD M, et al..Towards cell nucleus microdosimetry: construction of a confocal laser-scanning fluorescence microscope to readout fluorescence nuclear track detectors (FNTDs)[J]. Medical Physics, 2012, 39(6): 3725-3725.
AGUIAR T R, ANDRE C B, ARRAIS C A G, et al..Micromorphology of resin-dentin interfaces using self-adhesive and conventional resin cements: a confocal laser and scanning electron microscope analysis[J]. Int. J. Adhes. Adhes., 2012, 38: 69-74.
KRICHEVSKY O, BONNET G.Fluorescence correlation spectroscopy: the technique and its applications[J]. Rep. Prog. Phys., 2002, 65(2): 251-297.
HESS S T, HUANG S H, HEIKAL A A, et al..Biological and chemical applications of fluorescence correlation spectroscopy: a review[J]. Biochemistry, 2002, 41(3): 697-705.
BIANCHINI P, HARKE B, GALIANI S, et al.. Multiphoton and STED imaging nanoscopy[J]. Biophys. J., 2012, 102(3): 724a.
LAU L, LEE Y L, SAHL S J, et al..STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein[J]. Biophys. J., 2012, 102(12): 2926-2935.
0
浏览量
358
下载量
14
CSCD
关联资源
相关文章
相关作者
相关机构