浏览全部资源
扫码关注微信
山东大学 晶体材料国家重点实验室,山东 济南,250100
收稿日期:2013-05-21,
纸质出版日期:2014-01-15
移动端阅览
张芳, 王正平, 许心光. SrWO<sub>4</sub>晶体受激拉曼散射的各向异性[J]. 光学精密工程, 2014,22(1): 39-43
ZHANG Fang, WANG Zheng-ping, XU Xin-guang. Anisotropy of stimulated Raman scattering in SrWO<sub>4</sub> crystal[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 39-43
张芳, 王正平, 许心光. SrWO<sub>4</sub>晶体受激拉曼散射的各向异性[J]. 光学精密工程, 2014,22(1): 39-43 DOI: 10.3788/OPE.20142201.0039.
ZHANG Fang, WANG Zheng-ping, XU Xin-guang. Anisotropy of stimulated Raman scattering in SrWO<sub>4</sub> crystal[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 39-43 DOI: 10.3788/OPE.20142201.0039.
以四方晶系SrWO
4
晶体为例
研究其非主轴偏振配置的受激拉曼散射特性。用532 nm皮秒脉冲激光作为泵浦源
以单次通过的方式研究了
a
切SrWO
4
晶体的受激拉曼散射增益随泵浦光偏振方向的变化
由此确定出拉曼增益的各向异性。针对由 [WO
4
]
2-
四面体对称伸缩引起的924 cm
-1
的最强频移的实验显示:当入射光沿
a
轴和
c
轴偏振时
拉曼增益系数出现两个极大值
增益分别为10.1 cm/GW和14.2 cm/GW;当入射光沿
a
c
轴中分线方向偏振时
拉曼增益系数出现两个极小值
为7.1 cm/GW。结合拉曼张量及非极性晶格振动模拉曼散射强度解释了上述物理现象
证明了实验结果与理论相符。
The relationship between stimulated Raman scattering characteristics and the polarization direction of a pump light was researched by taking an a-cut SrWO
4
crystal which belongs to the tetragonal crystal system as a research object. Using a 532 nm light as the pump source and a single passing way as implementation
the anisotropy for the SRS’ gain of
a
-cut SrWO
4
crystal was determined. The experimental results on the strongest Raman frequency shifting of 924 cm
-1
come from the symmetrical stretching vibration of [WO
4
]
2-
tetrahedron show that the gain coefficients appear two maximum values of 10.1 cm/GW and 14.2 cm/GW respectively when the pump light is polarized on
a
and
c
axes
and the gain coefficients present two of the same minimal values of 7.1 cm/GW when the pump light is polarized along the bisector of
a
and
c
axes. The results are interpreted using a Raman tensor and the nonpolar Raman scattering intensity theory
which demonstrates that experimental results in this paper are in good agreement with that of the theory.
BASIEV T T, SOBOL A A, ZVEREV P G, et al.. Raman spectroscopy of crystals for stimulated Raman scattering [J]. Optical Materials, 1999, 11(4): 307-314.
胡大伟, 王正平, 张怀金, 等.外腔型YVO4拉曼激光器[J]. 光学 精密工程, 2009, 17(5): 975-979.
HU D W, WANG ZH P, ZHANG H J, et al.. External resonator YVO4 crystal Raman laser[J]. Opt. Precision Eng., 2009, 17(5): 975-979. (in Chinese)
PORTO S P S, SSCOTT J F. Raman spectra of CaWO4, SrWO4, CaMoO4 and SrMoO4 [J]. Physical Review, 1967, 157(3): 716-719.
李文超, 张景茹, 孙宇超, 等.硅拉曼激光器的设计与典型应用[J].光学 精密工程, 2013, 21(2): 308-315.
LI W CH, ZHANG J R, SUN Y CH, et al.. Design and typical application of silicon Raman laser[J]. Opt. Precision Eng. , 2013, 21(2): 308-315. (in Chinese)
ZVEREV P G, BASIEV T T, SOBOL A A, et al.. Stimulated Raman scattering in alkaline-earth tungstate crystals[J]. Quantum Electronics, 2000, 30(1): 55-59.
VORONINA I S, IVLEVA L I, BASIEV T T, et al.. Active Raman media∶ SrWO4∶Nd3+, BaWO4:Nd3+.growth and characterization [J]. Optoelectronics and Advanced Materials, 2003, 5(4): 887-892.
IVLEVA L I, BASIEV T T, VORONINA I S, et al.. SrWO4∶Nd3+—new material for multifunctional lasers[J]. Optical Materials, 2003, 23: 439-442.
JELNKOV H, ULC J, BASIEV T T, et al.. Stimulated Raman scattering in Nd∶SrWO4[J]. Laser Phys. Lett. , 2005, 2(1): 4-11.
DING S H, ZHANG X Y, WANG Q P, et al.. Highly efficient Raman frequency converter with strontium tungstate crystal [J]. Quantum Electronics, 2006, 42(1): 78-84.
JIA G, TU C, BRENIER A, et al.. Thermal and optical properties of Nd3+∶SrWO4: a potential candidate for eye-safe 1.517 μm Raman lasers[J]. Appl. Phys. B, 2005, 81: 627-632.
王正平, 胡大伟, 张怀金, 等. SrWO4晶体的紫外受激拉曼散射[J]. 无机材料学报. 2009, 24(3): 563-566.
WANG ZH P, HU D W, ZHANG H J, et al.. Ultra-violet stimulated Raman scattering of SrWO4 crystal[J]. Inorganic Materials, 2009, 24(3): 563-566. (in Chinese)
BASIEV T T, ZVEREV P G, KARASIK A Y, et al.. Picosecond stimulated Raman scattering in crystals[J]. Experimental and Theoretical Physics, 2004, 99(5): 934-941.
FAN Y X, LIU Y, DUAN Y H, et al.. High-efficiency eye-safe intracavity Raman laser at 1 531 nm with SrWO4 crystal[J]. Appl. Phys. B, 2008, 93: 327-330.
FAN L, FAN Y X, DUAN Y H, et al.. Continuous-wave intracavity Raman laser at 1 179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd∶YVO4 laser[J]. Appl. Phys. B, 2009, 94: 553-557.
CHEN X H, ZHANG X Y, WANG Q P, et al.. Diode side-pumped actively Q-switched Nd∶YAG/SrWO4 Raman laser with high average output power of over 10 W at 1 180 nm[J]. Laser Phys. Lett., 2009, 6(5): 363-366.
CONG Z H, ZHANG X Y, WANG Q P, et al.. Efficient diode-end-pumped actively Q-switched Nd∶YAG/SrWO4 /KTP yellow laser[J]. Optics Letters, 2009, 34(17): 2610-2612.
YANG F G, YOUI Z Y, ZHU Z J, et al.. End-pumped continuous-wave intracavity yellow Raman laser at 590 nm with SrWO4 Raman crystal[J]. Laser Phys. Lett., 2010, 7(1): 14-16.
DUAN Y M, ZHU H Y, ZHANG G, et al.. Efficient 559.6 nm light produced by sum-frequency generation of diode-end-pumped Nd∶YAG/SrWO4 Raman laser[J]. Laser Phys. Lett., 2010, 7(7): 491-494.
DUAN Y M, YANG F G, ZHU H Y, et al.. Continuous-wave 560 nm light generated by intracavity SrWO4 Raman and KTP sumfrequency mixing[J]. Optics Communications, 2010, 283: 5135-5138.
BAI F, WANG Q P, LIU Z J, et al.. Efficient 1.8 μm KTiOPO4 optical parametric oscillator pumped within an Nd∶YAG/SrWO4 Raman laser[J]. Optics Letters, 2011, 36(6): 813-815.
0
浏览量
364
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构