浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春,130033
收稿日期:2012-09-11,
纸质出版日期:2014-01-15
移动端阅览
张建, 宁永强, 张建伟等. 微型铷原子钟专用795 nm垂直腔表面发射激光器[J]. 光学精密工程, 2014,22(1): 50-57
ZHANG Jian, NING Yong-qiang, ZHANG Jian-wei etc. 795 nm VCSELs for <sup>87</sup>Rb based miniaturized atomic clock[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 50-57
张建, 宁永强, 张建伟等. 微型铷原子钟专用795 nm垂直腔表面发射激光器[J]. 光学精密工程, 2014,22(1): 50-57 DOI: 10.3788/OPE.20142201.0050.
ZHANG Jian, NING Yong-qiang, ZHANG Jian-wei etc. 795 nm VCSELs for <sup>87</sup>Rb based miniaturized atomic clock[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 50-57 DOI: 10.3788/OPE.20142201.0050.
针对铷(
87
Rb)原子钟激励光源微型化和高温工作的特殊需求
设计并制备了对应铷原子能级跃迁的795 nm垂直腔面发射激光器(VCSEL)。首先
根据k·p理论计算了InAlGaAs/AlGaAs量子阱的价带能级和材料增益
得到最优的量子阱组分和厚度;然后
采用一维传输矩阵方法设计了795 nm波段的布拉格反射器(DBR)
根据完整结构VCSEL器件的驻波场分布设计了掺杂分布;最后
采用金属有机气相外延(MOVPE)技术生长了优化的795 nm VCSEL外延结构
并制备了氧化限制型非闭合台面结构的795 nm顶发射器件。实验显示:封装后的75 μm口径器件可在室温至85 ℃范围内连续工作
最高功率为17 mW
激光光束呈圆形
发散角为15°
激射波长的温漂系数为0.064 nm/℃;在温度为52 ℃、注入电流为100 mA时
激射波长位于794.7 nm(对应铷原子钟需要的波长)
基本满足铷原子钟激励光源对波长稳定和高温工作的要求。
For the special requirements of the exciting source of a
87
Rb based atomic clock for the miniaturization and high temperature conditions
a 795 nm Vertical Cavity Surface Emitting Laser(VCSEL)corresponding to the Rb atom energy level transition was designed and fabricated. Firstly
the energy levels and material gains of the InAlGaAs/AlGaAs Multiple Quantum Wells (MQWs) were calculated by the k·p method to optimize the compositions and thicknesses of the quantum wells. Then
a Distributed Bragg Reflectors(DBRs) at 795 nm were designed and their reflection characteristics
longitudinal optical fields and averaged doping profiles were calculated and optimized using a one-dimensional transfer matrix method. Finally
the epitaxial structure of the 795 nm VCSEL with optimized MQWs and DBRs were grown on a GaAs substrate by Metal Organic Vapor Phase Epitaxy (MOVPE) and the oxide-confined 795 nm top-emitting VCSELs with unclosed-mesa structures were fabricated and characterized. Experimental results indicate that the packaged VCSELs can keep lasing under a cw current from 25 ℃ to 85 ℃ with power decreasing from 17 mW to 1.8 mW
the far field profiles are circular with a divergence angle of 15° and the temperature-shift of the lasing wavelength is 0.064 nm/℃. Moreover
the lasing wavelength moves to the wavelength required by
87
Rb atoms at an ambient temperature of 52 ℃ and a current of 100 mA. The 795 nm VCSELs satisfy the basic requirements of
87
Rb based miniaturized atom clocks for stable operation in a special wavelength and high-temperatures.
张星, 宁永强, 曾玉刚, 等. 980 nm高功率垂直腔面发射激光列阵的单元结构优化[J]. 光学 精密工程, 2011, 19(9): 2014-2021.
ZHANG X, NING Y Q, ZENG Y G, et al.. Optimization of 980 nm high-power vertical cavity surface emitting laser array element [J]. Opt. Precision Eng., 2011, 19(9): 2014-2021. (in Chinese)
田振华, 胡永生, 秦莉, 等. 高功率垂直腔面发射激光器的光束准直特性[J]. 发光学报, 2011, 32(9): 939-943.
TIAN ZH H, HU Y SH, QIN L, et al.. Collimation of high power vertical cavity surface emitting laser (VCSEL)[J]. Chin. J. Lumin., 2011, 32(9): 939-943. (in Chinese)
张岩, 宁永强, 秦莉, 等. 小发散角垂直腔面发射激光器的设计与制作[J]. 发光学报, 2011, 32(1): 47-52.
ZHANG Y, NING Y Q, QIN L, et al.. Design and fabrication of vertical cavity surface-emitting laser with small divergence [J]. Chin. J. Lumin., 2011, 32(1): 47-52.(in Chinese)
吕亮, 张可, 戴绩俊, 等. 基于垂直腔面发射半导体激光器的自混合测速实验[J]. 光学 精密工程, 2011, 19(1): 23-28.
L L, ZHANG K, DAI J J, et al.. Self-mixing velocimetry based on verical cavity surface-emitting laser [J]. Opt. Precision Eng., 2011, 19(1): 23-28. (in Chinese)
史晶晶, 秦莉, 宁永强, 等. 850 nm垂直腔面发射激光器列阵[J]. 光学 精密工程, 2012, 20(1): 17-23.
SHI J J, QIN L, NING Y Q, et al.. 850 nm vertical cavity surface-emitting laser array[J]. Opt. Precision Eng., 2012, 20(1): 17-23. (in Chinese)
ZHANG X W, NING Y Q, QIN L, et al..Stable polarization control of 980 nm high-power vertical-cavity surface-emitting lasers using sub-wavelength rectangular metal gratings [J].Chinese Journal of Luminescence, 2013, 34(9):1188-1193.
汪丽杰, 佟存柱, 曾玉刚, 等.高亮度布拉格反射波导激光器[J].发光学报, 2013, 34(6):787-791.
WANG L G, TONG C ZH, ZENG Y G.High brightness bragg reflection waveguide laser [J].Chinese Journal of Luminescence, 2013, 34(6):787-791.(in Chinese)
WESTBERGH P, GUSTAVSSON J, KOGEL B, et al.. 40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL[J]. Electron Lett., 2010, 46:1014-1016.
LARSSON A. Advances in VCSELs for communication and sensing[J]. IEEE J. Sel. Top Quantum Electron., 2011, 17(6): 1552-1567.
SERKAND D K, PEAKEA G M, GEIBA K M, et al.. VCSELs for atomic clocks [J]. SPIE, 2006, 6132:1-8.
张首刚.新型原子钟发展现状[J]. 时间频率学报, 2009, 32(2): 81-91.
ZHANG SH G. Progress of novel atomic clocks[J]. J.Time and Frequency, 2009, 32(2): 81-91.(in Chinese)
ARIMONDO E. Coherent population trapping in laser spectroscopy [J]. Progress in Optics, 1996, 35: 257-354.
LUTWAK R, EMMONS D, ENGLISH T, et al.. The chip-scale atomic clock-recent development progress[R].Symmetricom-Technology Realization Center Beverlyma, 2004.
GORECKI C, HASEGAWA M, PASSILLY N, et al.. Towards the realization of the first European MEMS atomic clock [C].IEEE/LEOS, 2009:47-48.
陈杰华, 杜润昌, 赵劼成, 等. 激光光谱研究垂直腔面发射激光器的特性[J]. 中国激光, 2010, 37(10): 2515-2519.
CHEN J H, DU R CH, ZHAO J CH, et al.. Study on characteristics of vertical-cavity surface- emitting laser by laser spectrometry [J]. Chinese Journal of Laser, 2010, 37(10): 2515-2519. (in Chinese)
SERKLAND D K, PEAKE G M, GEIB K M, et al.. VCSELs for atomic clocks[J]. SPIE, 2006, 6132: 613208-613201.
WAHL D, SETZ D, AL-SAMANEH A. Development of VCSELs for atomic clock applications[R]. Annual Report, 2008:49-54.
CHANG C S, CHUANG S L.Modeling of strained quantum-well lasers with spin-orbit coupling [J].Selected Topics in Quantum Electronics, 1995, 1(2):218-229.
PIPREK J. Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation[M].Academic Press, 2003.
李特, 宁永强, 郝二娟, 等. 980 nm底发射VCSEL的DBR设计与优化[J]. 中国科学(F辑):信息科学, 2009, 39(8): 918-922.
LI T, NING Y Q, HAO E J, et al.. Design and optimization of bottom emitting 980 nm VCSELs[J]. Science in China F:Information Sciences, 2009, 39(8): 918-922.(in Chinese)
HEGBLOM E R. Engineering Oxide Apertures in Vertical Cavity Lasers [D]. Santa Barbara: Univ. California, 1999.
0
浏览量
287
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构