浏览全部资源
扫码关注微信
南京理工大学 机械工程学院,江苏 南京,中国,210094
收稿日期:2013-07-19,
纸质出版日期:2014-01-15
移动端阅览
杨亮, 苏岩, 裘安萍等. 具有增益补偿功能的微机械陀螺数字化驱动闭环[J]. 光学精密工程, 2014,22(1): 109-116
YANG Liang, SU Yan, QIU An-ping etc. Digital drive closed-loop with gain compensation for micro-machined gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 109-116
杨亮, 苏岩, 裘安萍等. 具有增益补偿功能的微机械陀螺数字化驱动闭环[J]. 光学精密工程, 2014,22(1): 109-116 DOI: 10.3788/OPE.20142201.0109.
YANG Liang, SU Yan, QIU An-ping etc. Digital drive closed-loop with gain compensation for micro-machined gyroscope[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 109-116 DOI: 10.3788/OPE.20142201.0109.
提出了具有增益补偿功能的数字化驱动闭环方法
以便提高微机械陀螺标度因数的稳定性。介绍了微机械陀螺的工作原理
对其运动方程的分析显示:为了提高标度因数的稳定性
需要提高陀螺驱动模态振动速度的稳定性;而振动速度的稳定性与驱动环路中C/V转换电路增益的稳定性相关。为此
设计了增益补偿算法
配合自动增益控制环节和锁相环环节构建了具有增益补偿功能的数字化驱动闭环。仿真结果表明
在C/V转换电路增益相对变化量为7.4%时
振动速度幅值的相对变化量由无增益补偿时的7.29%降到了有增益补偿时的0.12%。实验结果表明
增加增益补偿环节后
标度因数的温度系数在-40℃到60℃的降幅达到了90%。得到的结果验证了具有增益补偿功能的微机械陀螺数字化驱动闭环可以较大幅度地提高微机械陀螺标度因数的稳定性。
A digital drive closed-loop method with gain compensation was proposed to improve the stability of scale factor for a micro-machined gyroscope. The working principle of the micro-machined gyroscope was analyzed and the analysis results on the dynamic equation show that in order to improve the stability of the scale factor
the stability of drive-mode vibration speed of the gyroscope should be improved. However
the stability of drive-mode vibration speed of the gyroscope is dependent on the stability of gain of a C/V conversion circuit in the drive closed-loop. Therefore
a gain compensation algorithm was proposed and the digital drive closed-loop with gain compensation was designed by combining with a automatic gain control loop and a phase locked loop. Simulation results show when the gain of C/V conversion circuit changes 7.4% in relative
the amplitude of vibration velocity changes from 7.29% without gain compensation to 0.12% with gain compensation. Experiment results indicate that the temperature coefficient of scale factor within -40℃ to 60℃ is reduced by 90% after gain compensation. It verifies that the digital drive closed-loop with gain compensation can significantly improve the stability of scale factor for the micro-machined gyroscope.
STRAUBE T M. A temperature compensation procedure for performance improvement of mass-produced MEMS gyroscopes based on direct parameter measurement [D]. United States: University of Colorado, 2010.
DAVIS W O. Mechanical analysis and design of vibratory micromachined gyroscopes[D]. United States: University of California, 2001.
陈怀, 张嵘, 周斌, 等. 微机械陀螺仪温度特性及补偿算法研究[J]. 传感器技术, 2004, 23(10): 24-26.
CHEN H, ZHANG R, ZHOU B, et al.. Research on thermal characteristic and compensation algorithm for MEMS-gyroscope [J]. Journal of Transducer Technology, 2004, 23(10): 24-26. (in Chinese)
夏敦柱, 王寿荣, 周百令. 硅微陀螺仪零偏温度性能补控方法设计[J]. 东南大学学报:自然科学版, 2012, 42(2): 290-294.
XIA D ZH, WANG SH R, ZHOU B L. ZRO temperature dependency compensating-control design of micro-gyro[J].Journal of Southeast University:Natural Science Edition, 2012, 42(2): 290-294. (in Chinese)
XIA D ZH, CHEN S, WANG S, et al.. Microgyroscope temperature effects and compensation-control methods[J]. Sensors, 2009, 9(10): 8349-8376.
顾广清, 夏敦柱, 李宏生, 等. 硅微陀螺仪数字化温度补偿系统的实现[J]. 舰船电子工程, 2009, 28(12).
GU G Q, XIA D Z, LI H SH, et al.. Realization of the digital temperature compensation system for silicon micro-machined gyroscope [J]. Ship Electronic Engineering, 2009, 28(12): 49-52. (in Chinese)
满海鸥, 肖定邦, 吴学忠, 等. 硅微陀螺模态频率温度特性的研究[J]. 传感技术学报, 2009, 22(8): 1117-1121.
MAN H O, XIAO D B, WU X Z, et al.. Research on temperature characteristic of mode frequency of silicon micro-gyroscopes[J]. Chinese Journal of Sensors and Actuators, 2009, 22(8): 1117-1121. (in Chinese)
ZHOU B, ZHANG R, CHEN Z Y. Online self-compensation for enhanced the scale factor stability of a micromachined gyroscope [C]. 8th China International Nanoscience and Technology Symposiurm, 2009: 1-6.
施芹, 苏岩, 裘安萍, 等. MEMS 陀螺仪器件级真空封装技术[J]. 光学 精密工程, 2009, 17(8): 1987-1992.
SHI Q, SU Y, QIU A P, et al.. Device level vacuum packaging technologies of MEMS gyroscopes[J]. Opt. Precision Eng., 2009, 17(8): 1987-1992. (in Chinese)
PRIKHODKO I P, TRUSOV A A, SHKEL A M. Achieving long-term bias stability in high-q inertial mems by temperature self-sensing with a 0.5 millicelcius precision[J]. Solid-State Sensors, Actuators and Microsystems Workshop 2012, Hilton Head Island, South Carolina, USA, 2012: 287-290.
夏国明, 杨波, 王寿荣. 硅微机械陀螺自激驱动数字化技术[J]. 光学 精密工程, 2011, 19(3): 635-640.
XIA G M, YANG B, WANG SH R. Digital self-oscillation driving technology for silicon micro machined gyroscopes[J]. Opt. Precision Eng., 2011, 19(3): 635-640. (in Chinese)
NEUL R, GOMEZ U, KEHR K, et al.. Micromachined angular rate sensors for automotive applications [J]. Sensors Journal, IEEE, 2007, 7(2): 302-309.
0
浏览量
336
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构