浏览全部资源
扫码关注微信
苏州大学 机器人与微系统研究中心,江苏 苏州,215021
收稿日期:2013-06-09,
纸质出版日期:2014-01-15
移动端阅览
许晓威, 陈立国, 陈涛等. 悬空零电极介电湿润芯片的设计[J]. 光学精密工程, 2014,22(1): 138-145
XU Xiao-wei, CHEN Li- guo, CHEN Tao etc. Design of EWOD device with suspended ground electrode[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 138-145
许晓威, 陈立国, 陈涛等. 悬空零电极介电湿润芯片的设计[J]. 光学精密工程, 2014,22(1): 138-145 DOI: 10.3788/OPE.20142201.0138.
XU Xiao-wei, CHEN Li- guo, CHEN Tao etc. Design of EWOD device with suspended ground electrode[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 138-145 DOI: 10.3788/OPE.20142201.0138.
针对目前单极板数字微流控芯片驱动液滴的效果多通过数值仿真方法验证而缺乏实验支持
本文提出将单极板结构中的零电极进行悬空设计
并通过实验对比分析了设计的悬空零电极单极板结构的芯片和传统双极板结构的芯片对液滴的驱动效果。首先
基于介电湿润原理
推导出传统双极板结构中液滴所受到的介电驱动力以及每个阻力
接着
对文中设计的悬空零电极结构的单极板数字微流控芯片中液滴的受力情况进行分析。然后
对比分析两种结构的数字微流控芯片中液滴的受力情况。最后
对两种结构的数字微流控芯片驱动去离子水微液滴的效果进行试验验证。实验结果显示:驱动同等体积大小的微液滴时
本文设计制作的悬空零电极单极板芯片比双极板结构的芯片所需的电压更低
液滴的运动速度更快;当有效驱动电压达到44 V时
液滴的速度可以达到15 cm/s。得到的实验结果证明了在单极板悬空零电极结构的数字微流控芯片上液滴驱动速度更高
驱动电压更低。
This paper researches how to design the suspended ground electrode of an electrowetting-on-dielectric(EWOD)based device
because most of the existing investigations for the efficiency of single-plate EWOD device were carried out by means of numerical simulations and lack of experimental results.Then
it coampares
the driving effectiveness for a liquid droplet by the proposed EWOD device with suspended ground electrode and a traditional bipolar plate device.Based upon the theory of the EWOD
the dielectric
deriving EWOD force and each resistive force of the droplet holding between the bipolar plates were derived
and the forces of the droplet sitting on the single-plate EWOD device were analyzed. Then
the forces were compared between the bipolar plate device and the single-plate EWOD device. Finally
the driving characteristics of the droplet were tested via the fabricated EWOD device. The experimental results show that the driving voltage of single-plate is more low
and its velocity is more faster than that of the bipolar plates; the velocity of 1 μL droplet can be 15 cm/s when the driving potential is 44 V
RMS
.In conclusion
the obtained experimental results validate the feasibility of the single-plate EWOD device with suspended ground electrode for its faster velocity and low driving potential.
MAIS J J, MICHAEL S B, KAMLESH D P. Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine [J].Lab on a Chip, 2012, 12: 2452-2463.
MOHAMED A, PHILIP P, AARON R W. Optimization of device geometry in single-plate digital microfluidics [J]. Journal of Applied Physics, 2009, 105(9), 094506.
BERTHIER J, CLEMENTA P, FOUILLET Y, et al.. Computer aided design of an EWOD microdevice [J]. Sensors and Actuators A, 2006, A127:283-294.
PENG CH, FANG B Y, WE Z. Influence of electrolytes on contact angles of droplets under electric field [J]. Analyst, 2013, 138:2372-2377.
BIDDUT B. Study of droplet splitting in an electrowetting based digital Systems [D]. Okanagan:University of British Columbia, 2012.
HERMAN O, BART V, MARTINE B. Modeling and control of electrowetting induced droplet motion [J]. Micromachines, 2012, 3:150-167.
AHMADI A, NAJJARAN H, HOORFAR M, et al.. Two-dimensional flow dynamics in digital microfluidic systems[J]. Journal of Micromchanics and Microengineering, 2009, 19: 065003.
CHEN CH H, TSAI S L, JANG L SH, et al.. Effects of gap height, applied frequency, and fluid conductivity on minimum actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis [J]. Sensors and Actuators: Chemical, 2011, B 159:321-327.
BIDDUT B, HONMAYOUN N. Droplet position control in digital microfluidic systems [J]. Biomed Microdevices, 2010, 12: 115-124.
BIDDUT B, HOMAYOUN N. Simulation of droplet position control in digital microfluidic systems [J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132:014501.
CHANG J H, KIM D S, JAMS J.Simplified ground-type single electrowetting device for droplet transport [J].Journal of Electrical Engineering & Technology, 2011, 6(3):402-407.
CHANG J H, JAMS J P. Twin-plate electrowetting for efficient digital microfluidics [J]. Sensors and Actuators , 2010, B' 160: 1581-1585.
许晓威, 陈立国, 孙立宁.半月形电极微液滴驱动的微流控芯片[J].光学 精密工程, 2013, 21(10):2557-2565.
XU X W, CHEN L G, SUN L N.Micro-droplet driven digital microfluidic device with crescent electrode [J].Opt. Precision Eng. , 2013, 21(10):2557-2565.(in Chinese)
0
浏览量
633
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构