浏览全部资源
扫码关注微信
1. 重庆大学 光电技术及系统教育部重点实验室 重庆,400044
2. 重庆科技学院 重庆,401331
收稿日期:2013-08-12,
纸质出版日期:2014-01-15
移动端阅览
杨利平, 辜小花,. 用于人脸识别的相对梯度直方图特征描述[J]. 光学精密工程, 2014,22(1): 152-159
YANG Li-ping, GU Xiao-hua,. Relative gradient histogram features for face recognition[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 152-159
杨利平, 辜小花,. 用于人脸识别的相对梯度直方图特征描述[J]. 光学精密工程, 2014,22(1): 152-159 DOI: 10.3788/OPE.20142201.0152.
YANG Li-ping, GU Xiao-hua,. Relative gradient histogram features for face recognition[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 152-159 DOI: 10.3788/OPE.20142201.0152.
由于方向边缘幅值模式(POEM)在剧烈光照变化情况下无法获得足够的特征描述信息
本文分析了相对梯度幅值图像特点
提出了相对梯度直方图特征描述方法。该方法根据图像的梯度方向对相对梯度幅值图像进行分解、滤波、局部二值模式编码和特征降维
形成了对光照变化
尤其是非均匀光照变化具有健壮性的低维直方图特征。在FERET和YaleB子集上的人脸识别实验证实:在光照变化较小时
相对梯度直方图特征描述方法与方向边缘幅值模式的性能相当
均显著优于经典的局部二值模式特征;在光照剧烈变化时
前者的识别精度比方向边缘幅值模式至少高5%
性能显著优于方向边缘幅值模式和局部二值模式
展示了相对梯度直方图特征描述方法的有效性和对光照变化的良好健壮性。
As Pattern of Oriented Edge Magnitude (POEM) method can not acquire enough feature description information in illumination condition changes drastically
this paper analyzes the characteristic of relative gradient magnitude images and proposes a Relative Gradient Histogram Feature(RGHF) description method. The method decomposes the relative gradient magnitude image into several sub images according to the orientations of gradient. Each of these sub images is then filtered and encoded by using Local Binary Patterns(LBPs). Finally
all the encoded LBP histogram features are connected by a lexicographic ordering and are reduced to a low-dimensional subspace to form the RGHF
which is an illumination robust low-dimensional histogram feature. Experimental results on FERET and YaleB subsets indicate when the illumination variation is relative small
the recognition performance of the RGHF is comparable with that of the POEM
superior to that of the LBP significantly. Moreover
when the illumination variation is drastic
the recognition performance of RGHF is at least 5% higher than that of the POEM
more better than those of the POEM and LBP.
GAO W, CAO B, SHAN S, et al.. The CAS-PEAL large-scale Chinese face database and baseline evaluations [J]. IEEE Trans. Syst. Man Cybern. Part A-Syst. Hum., 2008, 38(1): 149-161.
杨利平, 龚卫国, 李伟红, 等. 随机采样子空间保局投影人脸识别算法[J]. 光学 精密工程, 2008, 16(8): 1465-1470.
YANG L P, GONG W G, LI W H, et al.. Random sampling subspaces locality preserving projections for face recognition [J]. Opt. Precision Eng., 2008, 16(8): 1465-1470. (in Chinese)
BELHUMEUR P, HESPANHA J, KRIEGMAN D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19(7): 711-720.
杨利平, 辜小花, 叶洪伟. 用于分类的样本保局鉴别分析方法[J]. 光学 精密工程, 2011, 19(9): 2205-2213.
YANG L P, GU X H, YE H W. Sample locality preserving discriminant analysis for classification [J]. Opt. Precision Eng., 2011, 19(9): 2205-2213. (in Chinese)
YAN S, XU D, ZHANG B, et al.. Graph embedding and extensions: a general framework for dimensionality reduction [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29(1):40-51.
LEE K C, HO J, YANG M H, et al.. Visual tracking and recognition using probabilistic appearance manifolds [J]. Comput. Vis. Image Understand. 2005, 99: 303-331.
CHELLAPPA R, NI J, PATEL V M. Remote identification of faces: problems, prospects, and progress [J]. Pattern Recognit. Lett., 2012, 33: 1849-1859.
VU N S, DEE H M, CAPLIER A. Face recognition using the POEM descriptor [J]. Pattern Recognit., 2012, 45: 2478-2488.
ZHANG T H, HUANG K Q, LI X L, et al.. Discriminative orthogonal neighborhood-preserving projections for classification [J]. IEEE Trans. Syst. Man Cybern. Part B-Cybern., 2010, 40(1): 253-263.
TZIMIROPOULOS G, ZAFEIRIOU S, PANTIC M. Subspace learning from image gradient orientations [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34(12): 2454-2466.
PINTO N, COX D. High-throughput-derived biologically-inspired features for unconstrained face recognition [J]. Image Vis. Comput., 2012, 30: 159-168.
ZHANG B, SHAN S, CHEN X, et al.. Histogram of Gabor phase patterns(HGPP): a novel object representation approach for face recognition [J]. IEEE Trans. Image Process, 2007, 16(1): 57-68.
AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns: application to face recognition [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28(12): 2037-2041.
OJANSIVU V, HEIKKILA J. Blur insensitive texture classification using local phase quantization [C]. Proceedings of Image and Signal Processing, 2008:236-243.
LOWE D G. Distinctive image features from scale-invariant keypoints [J]. Int. J. Comput. Vis., 2004, 60(2): 91-110.
ALBIOL A, MONZO D, MARTIN A, et al.. Face recognition using HOG-EBGM [J]. Pattern Recognit. Lett., 2008, 29: 1537-1543.
ZHANG T P, TANG Y Y, FANG B, et al.. Face recognition under varying illumination using gradientfaces [J]. IEEE Trans. Image Process., 2009, 18(11): 2599-2606.
龚卫国, 杨利平, 辜小花, 等. 基于多级小波分解的人脸图像光照补偿方法[J]. 光学 精密工程, 2008, 16(8): 1459-1464.
GONG W G, YANG L P, GU X H, et al.. Illumination compensation based on multi-level wavelet decomposition for face recognition [J]. Opt. Precision Eng., 2008, 16(8): 1459-1464.(in Chinese)
VU N S, CAPLIER A.Enhanced patterns of oriented edge magnitudes for face recognition and image matching [J]. IEEE Trans. Image Process., 2012, 21(3): 1352-1365.
0
浏览量
186
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构