浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2013-02-11,
纸质出版日期:2014-01-15
移动端阅览
宋修锐, 吴志勇,. 图像通用目标的无监督检测[J]. 光学精密工程, 2014,22(1): 160-168
SONG Xiu-rui, WU Zhi-yong,. Unsupervised detection of image object with any class[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 160-168
宋修锐, 吴志勇,. 图像通用目标的无监督检测[J]. 光学精密工程, 2014,22(1): 160-168 DOI: 10.3788/OPE.20142201.0160.
SONG Xiu-rui, WU Zhi-yong,. Unsupervised detection of image object with any class[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 160-168 DOI: 10.3788/OPE.20142201.0160.
为了实现对图像中多种类目标的检测
缩短目标搜索时间
本文基于图像目标的3个显著性线索(显著性检测
颜色对比
超像素跨越)
构建了一种改进的通用无监督目标检测模型。通过机器学习center-surrounding比例参数
计算各个线索的显著度得分
并在朴素贝叶斯框架下对这3个目标显著性线索进行融合
以最终确定窗口中包含图像目标的概率。实验参数在PASCAL VOC 2007图像库进行检测
检测率为28.94%
击中率达96.99%;在MSRC图片库进行检测
检测率为80.64%
击中率达99.10%;得到的结果证明了本文模型的通用性。另外
该模型对单幅图像的处理时间较Bogdan的检测模型提高了40%
改进了目标检测效率。本文模型可为后续的目标识别
图像分割提供更快、更准确的先验位置信息。
To measure a variety of objects of an image and to reduce the detection time
an unsupervised object detection model was established to provide location priors. The model was mainly based on three image cues of a object
and they are saliency detection
color contrast and superpixel straddling. To determine the likelihood of image object contained in a window
the saliency scores of the three cues were calculated
and the saliency cues of the three objects were fused in a simple Bayesian framework by a machine learning center-surrounding proportion parameter. In experiments on the challenging PASCAL VOC 07 dataset
it shows that the detection rate is 28.94 %
the hit rate is 96.99% and the combined measuring result is better than any cue alone. In experiments on MSRC dataset
it shows that the proposed model is generic and efficient
the detection rate is 80.64 %
the hit rate is 99.10% and the average processing time is 40% less than that of Bogdan's model.These results from extensive field tests suggest that proposed model can provide better location priors to the object recognition and image segmentation where the location of object is unknown.
LEIBE B, LEONARDIS A, SCHIELE B. Combined object categorization and segmentation with an implicit shape model [C]. Europeon Conference on Computer Vision, ECCV, 2004: 17-32.
FELZENSZWALB P F, GIRSHICK R B, MCALLESTER R B D, et al.. Object detection with discriminatively trained part based models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI, 2010: 1627-1645.
LI L J, WANG G, LI F F . OPTIMOL: automatic online picture collection via incremental model learning [C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2007: 1-8.
GU C, LIM J J, ARBELAEZ P, et al..Recognition using regions [C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2009:1030-1037.
KUMAR M P, TORR P H S, ZISSERMAN A. OBJCUT:Efficient segmentation using top-down and bottom-up cues[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2005:18-25.
LEIBE B, SCHIELE B. Interleaved object categorization and segmentation[C]. British Machine Vision Conference, BMVC, 2003:264-271.
FULKERSON B, VEDALDI A, SOATTO S. Class segmentation and object localization with superpixel neighborhoods [C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2009: 670-677.
ALEXE B, DESELARES T, FERRARI V. What is an object?[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2010:73-80.
ACHANTA R, HEMAMI S, ESTRADA F, et al..Frequency-tuned salient region detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2009:1597-1604.
HOU X, ZHANG L. Saliency detection: a spectral residual approach[C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2007:1-8.
EVERINGHAM M, Van Gool L, WILLIAMS C K I, et al.. The PASCAL Visual Object Classes Challenge 2006[R].2006.
SHOTTON J, JOHNSON M, CIPOLLA R.Semantic texton forests for image categorization and segmentation [C] . IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2009:1-8.
FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al.. Object detection with discriminatively trained part based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI, 2010:1627-1645.
SHOTTON J, WINN J, ROTHER C, CRIMINISI A. Textonboost for im-age understanding: Multi-class object recognition and segmentation by jointly modeling texture[J]. International Journal of Computer Vision, IJCV, 2007:2-23.
VERBEEK J, TRIGGS B. Region classification with markov field aspect models [C]. IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2007.
EVERINGHAM M, VAN GOOL L, WILLIAMS C, et al.. Zisser-man. The PASCAL Visual Object Classes Challenge 2007[R].2007.
0
浏览量
679
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构