浏览全部资源
扫码关注微信
电子科技大学 光电信息学院,四川 成都,610054
收稿日期:2013-08-16,
纸质出版日期:2014-01-15
移动端阅览
彭真明, 景亮, 何艳敏等. 基于多尺度稀疏字典的多聚焦图像超分辨融合[J]. 光学精密工程, 2014,22(1): 169-176
PENG Zhen-ming, JING Liang, HE Yan-min etc. Superresolution fusion of multi-focus image based on multiscale sparse dictionary[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 169-176
彭真明, 景亮, 何艳敏等. 基于多尺度稀疏字典的多聚焦图像超分辨融合[J]. 光学精密工程, 2014,22(1): 169-176 DOI: 10.3788/OPE.20142201.0169.
PENG Zhen-ming, JING Liang, HE Yan-min etc. Superresolution fusion of multi-focus image based on multiscale sparse dictionary[J]. Editorial Office of Optics and Precision Engineering, 2014,22(1): 169-176 DOI: 10.3788/OPE.20142201.0169.
由于传统的多聚焦图像融合算法不能对图像中聚焦区域划分进行有效度量
提出了一种新的多聚焦图像超分辨融合方法来改善图像融合效果。该方法对图像清晰区和模糊区进行度量
并利用稀疏表示方法对度量后的清晰区域进行超分辨重建。首先
采用空间频率方法提取源图像中清晰区域与模糊区域
然后确定清晰区域中的主清晰区和次清晰区
并计算它们的真实下采样尺度。最后
通过学习多尺度稀疏表示字典对图像中次清晰区域进行超分辨率重建
并与清晰区域结合形成最终融合图像。实验及各种定量评价结果表明
提出的方法较常规方法具有更好的融合性能
得到的图像更清晰。对比Harr小波
非下采样轮廓波变换(NSCT)
剪切波(Shearlet)变换等方法
其熵(EN)提升了1%
峰值信噪比(PSNR)提升了0.62 dB
清晰度(SP)和空间频率(SF)提升30%
均方误差(MSE)下降了6%左右。
As traditional multi-focus image fusion methods can not effectively measure the partitioning focus regions in images
a novel algorithm by using super-resolution image reconstruction for multi-focus image fusion was proposed to solve the problem. The algorithm measured the in-focus and out-of-focus regions and performed the super-resolution image reconstruction for the clear area with sparse representation. Firstly
the spatial frequency method was used to extract the in-focus and out-of-focus regions in source images. Then
the main-clear and sub-clear parts within in-focus regions were identified and their real down-sampling scales for each part were calculated. Finally
the sub-clear parts were reconstructed in super-resolution through learning multi-scale sparse dictionaries and the fused image was obtained by combining the different parts of source images. The experimental results show that the proposed method can provide clear images and better facus performance. As compared with the conventional methods
such as Harr wavelet
Nonsubsampled Contourlet Transform (NSCT)
and shearlet transform
the proposed method enhances its Entropy (EN) and Peak Signal-to-Noise Ratio (PSNR) by 1%
and 0.62dB
respectively
the clarity (SP) and spatial frequency (SF) by 30%
and the Mean Square Error (MSE) is decreased by about 6%.
苗启广, 王宝树. 一种自适应PCNN多聚焦图像融合新方法[J]. 电子与信息学报, 2006, 28(3): 466-470.
MIAO Q G, WANG B SH. A novel algorithm of multi-focus image fusion using adaptive pCNN [J]. Journal Electronics & Information Technology, 2006, 28(3): 466-470.(in Chinese)
HUANG W, JING ZH L. Multi-focus image fusion using pulse coupled neural network [J]. Pattern Recognition Letters, 2007, 28(9): 1123-1132.
TIAN J, CHEN L, MA L H, et al.. Multi-focus image fusion using a bilateral gradient-based sharpness criterion [J]. Optics Communications, 2011, 284(1): 80-87.
张雄美, 李俊山, 易昭湘, 等. 非抽样轮廓波变换域图像融合方法研究[J]. 电光与控制, 2008, 15(7): 16-19.
ZHANG X M, LI J SH, YI ZH X, et al.. Image fusion based on nonsampled contourlet[J]. Electronics Optical & Control, 2008, 15(7):16-19.(in Chinese)
MIAO Q G, SHI CH, XU P F, et al.. Multi-focus image fusion algorithm based on shearlets [J]. Chinese Optics Letters, 2011, 9(4):1-5.
ESKICIOGLU A M. Image quality measures and their performance [J]. IEEE Transactions on Communications, 1995, 43(12): 2959-2965.
KONG J, ZHENG K Y, ZHANG J B, et al.. Multi-focus image fusion using spatial frequency and genetic algorithm[J]. International Journal of Computer Science and Network Security, 2008, 8(2): 220-224.
LI SH T, YANG B. Multi-focus image fusion using region segmentation and spatial frequency [J]. Image and Vision Computing, 2008, 26(7): 971-979.
MARUTHI R. Multi focus image fusion technique in spatial domain using an image variance as a focus measure [J]. Journal on Future Engineering and Technology, 2010, 5(3): 24-31.
HE Y M, GAN T, CHEN W F, et al.. Multi-stage image denoising based on correlation coefficient matching and sparse dictionary pruning [J]. Signal Processing, 2012, 92:139-149.
何艳敏, 甘涛, 陈武凡. 基于稀疏表示的两级图像去噪[J]. 电子与信息学报, 2012, 34(9): 2268-2272.
HE Y M, GAN T, CHEN W F. Two-stage Image Denoising Based on Sparse Representations [J]. Journal of Electronics & Information Technology, 2012, 34(9): 2268-2272.(in Chinese)
YANG J CH, JOHN W, HUANG T S, et al.. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[J]. Curves and Surfaces, 2010: 711-730.
路锦正, 张启衡, 徐智勇, 等. 光滑逼近超完备稀疏表示的图像超分辨率重构[J]. 光电工程, 2012, 39(2): 123-129.
LU J ZH, ZHANG Q H, XU ZH Y, et al.. Image super-resolution reconstruction based on smoothly approximate over-complete sparse representation [J]. Opto-Electronic Engineering, 2012, 39(2): 123-129.(in Chinese)
路锦正, 张启衡, 徐智勇, 等. 超完备稀疏表示的图像超分辨率重构方法[J]. 系统工程与电子技术, 2012, 34(2): 403-408.
LU J ZH, ZHANG Q H, XU ZH Y, et al.. Image super-resolution reconstruction algorithm using over-complete sparse representation[J]. Systems Engineering and Electronics, 2012, 34(2): 403-408.(in Chinese)
AHARON M, ELAD M, BRUCKSTEIN A M. K-SVD: An algorithm for designing over-complete dictionaries for sparse representation[J]. IEEE Trans. on Signal Processing, 2006, 54(11): 4311-4322.
0
浏览量
169
下载量
20
CSCD
关联资源
相关文章
相关作者
相关机构